数据资产管理领域重要的三个方向

发布时间:2020.11.06来源:知乎浏览量:1次标签:数据治理

数据资产管理领域重要的三个方向包括:资产分析、资产治理、资产应用,并需要基于这三个方向的技术研究和实战,将流程、经验、标准和规范等产品化,最终构成企业统一的数据资产管理平台


◆ 资产分析
资产分析包括了资产盘点和资产评估两部分。资产盘点是为了让使用数据的人员能更好的理解数据,可通过知识图谱进行内容的理解和推理或构建企业资产目录;资产评估则对资产的活性、投入产出比进行评估。

资产分析具体包括以下三部分内容:
资产分析对象
以企业全域大数据作为资产分析对象。
多维度数据资产分析体系
基于资产分析对象,以基层元数据、用户行为日志、数据知识图谱为素材,通过综合人脑和机器学习算法是手段,充分理解数据资产内容,完成各类数据资产分析,理解数据内容;
用户协同,并建立数据确信机制,进而实现数据内容理解与数据确信机制相辅相成的多维数据资产分析体系。

资产分析产品化
基于多维度数据资产分析体系,在技术端和用户看不到的产品背后进行资产盘点、资产评估和资产探查,从而向用户输出易读、易懂的资产报告;
提供资产导航服务,方便用户通过多种方式找到想要的数据及其详情;

提供特定专题的资产分析服务,如核心资产分析、用户自定义资产分析等;

提供简单易用、有助于资产分析和产品化的配置管理,如数据类目配置管理、数据资产打标签等管理。

◆ 资产管理
资产治理包括对计算、存储、治理、模型、安全、成本等领域进行治理,并形成有效的智能治理闭环,将治理方法论沉淀为工具产品输出。

资产治理具体包括以下两部分内容:

资产治理闭环体系
建立包括现状分析、问题诊断、治理优化、效果反馈在内的资产治理闭环体系;
对各环节内容进行丰富和完善,问题诊断不仅仅包括计算存储资源诊断,还包括数据质量与数据安全的领域诊断。

资产治理多维度输出
资产治理致力于将治理闭环能力开放。通过标准输出、定制产品、能力输出、构建协作机制等维度进行输出。


◆资产应用

资产应用通过全链路实现端到端打通,评估应用投入产出比,并进行安全的检测管控。

资产应用具体包括以下两部分内容:
资产应用全链路体系
通过全链路数据跟踪,将数据从获取到数据处理再到数据应用,实现端到端的打通。
资产应用产品化
围绕最终用户,以数据资产的本质为驱动力,提供应用分析产品。包括全链路“血缘”关系,清晰展示数据的来龙去脉;
全链路保障:让用户清楚知道各种保障措施和问题所在,以及为何资产应用能够稳定、健康的运行;
访问分析:全面分析数据应用到的产品及场景的被访问情况;
ROI评估:为用户指明当前产品或场景化应用的投入产出情况。
通过资产分析、资产治理、资产应用,我们努力让大数据从成本中心走向资产中心,让企业致力于数据资产建设和管理。让企业数据可获得全盘把握及全盘分析、清晰查看及快速使用、准确评估及合理应用、智能诊断及高效治理,让企业大数据释放出应有的价值。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 灵活的分析数据生命周期?

    灵活的分析数据生命周期?

    受监管实验室数据完整性指南的要求之一是数据生命周期,涵盖监管记录的生死。数据生命周期在最近的MHRA数据完整性指南中定义为“从生成和记录……查看详情

    发布时间:2018.12.27来源:数据治理浏览量:2次

  • 区块链与数据治理

    区块链与数据治理

    大数据时代,数据源源不断产生并自主汇聚至多方数据收集者,数据已经成为企业间竞争的关键和影响国家竞争力的重要因素,由此数据治理成为企业治理……查看详情

    发布时间:2020.06.24来源:知乎浏览量:5次

  • 方法论:如何从0到1搭建企业级主数据管理平台

    方法论:如何从0到1搭建企业级主数据管理平台

    一个完整的主数据管理方案应该包括:主数据管理体系建设、主数据管理系统建设,这两个层面。主数据体系建设是企业数据管理的核心,是标准化数据的……查看详情

    发布时间:2021.05.13来源:亿信数据治理知识库浏览量:1次

  • 浅谈数据治理的发展趋势

    浅谈数据治理的发展趋势

    随着大数据技术的飞速发展,大数据已经融入到了各行各业,为了能让各企业的数据资产得到充分的利用,数据治理非常重要,如今数据治理已经逐渐成为……查看详情

    发布时间:2019.07.17来源:知乎浏览量:8次

  • 数据治理:指定您的业务战略

    数据治理:指定您的业务战略

    数据治理是作为一个重要的业务计划,治理需要政策,所以在进行治理的时候就需要通过多方协调找到最适合自身组织的治理方法。 ……查看详情

    发布时间:2019.09.04来源:知乎浏览量:1次

  • 2018年十大科技趋势与其对IT和执行的影响

    2018年十大科技趋势与其对IT和执行的影响

    消失中的企业数据中心(DisappearingEnterpriseDataCenters)目前在中国,大型企业自建并管理数据中心仍是主流……查看详情

    发布时间:2019.01.03来源:Gartner浏览量:1次

  • 智与理的结合:当数据治理遇上人工智能

    智与理的结合:当数据治理遇上人工智能

    近日,中国移动研究院发布文章,解说了数据治理和人工智能两者之间各自发展历程,论证了两者在结构功能上的相互作用,阐明了两者共同发展的前……查看详情

    发布时间:2018.09.18来源:中国大数据产业观察网浏览量:0次

  • 数据治理概述

    数据治理概述

    每天,大学的数据都会被评估,创建,使用,存储,存档,报告或删除。数据治理为罗切斯特的这些信息的定义,交换,完整性和安全性设定了标准和协议……查看详情

    发布时间:2018.11.26来源:数据治理浏览量:1次

  • 经济社会数字化转型的特征事实

    经济社会数字化转型的特征事实

    联合国、世界贸易组织、经济合作和发展组织、国际货币基金组织等先后于近期发表研究报告,从整体上描述了经济社会数字化转型的特征事实。概括起来……查看详情

    发布时间:2020.10.31来源:知乎浏览量:2次

  • 什么是数据治理以及数据治理架构

    什么是数据治理以及数据治理架构

    数据治理(DataGovernance),是企业数据治理部门发起并推行的,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的……查看详情

    发布时间:2018.12.06来源:数据治理浏览量:2次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议