数据资产管理领域重要的三个方向

发布时间:2020.11.06来源:知乎浏览量:108次标签:数据治理

数据资产管理领域重要的三个方向包括:资产分析、资产治理、资产应用,并需要基于这三个方向的技术研究和实战,将流程、经验、标准和规范等产品化,最终构成企业统一的数据资产管理平台


◆ 资产分析
资产分析包括了资产盘点和资产评估两部分。资产盘点是为了让使用数据的人员能更好的理解数据,可通过知识图谱进行内容的理解和推理或构建企业资产目录;资产评估则对资产的活性、投入产出比进行评估。

资产分析具体包括以下三部分内容:
资产分析对象
以企业全域大数据作为资产分析对象。
多维度数据资产分析体系
基于资产分析对象,以基层元数据、用户行为日志、数据知识图谱为素材,通过综合人脑和机器学习算法是手段,充分理解数据资产内容,完成各类数据资产分析,理解数据内容;
用户协同,并建立数据确信机制,进而实现数据内容理解与数据确信机制相辅相成的多维数据资产分析体系。

资产分析产品化
基于多维度数据资产分析体系,在技术端和用户看不到的产品背后进行资产盘点、资产评估和资产探查,从而向用户输出易读、易懂的资产报告;
提供资产导航服务,方便用户通过多种方式找到想要的数据及其详情;

提供特定专题的资产分析服务,如核心资产分析、用户自定义资产分析等;

提供简单易用、有助于资产分析和产品化的配置管理,如数据类目配置管理、数据资产打标签等管理。

◆ 资产管理
资产治理包括对计算、存储、治理、模型、安全、成本等领域进行治理,并形成有效的智能治理闭环,将治理方法论沉淀为工具产品输出。

资产治理具体包括以下两部分内容:

资产治理闭环体系
建立包括现状分析、问题诊断、治理优化、效果反馈在内的资产治理闭环体系;
对各环节内容进行丰富和完善,问题诊断不仅仅包括计算存储资源诊断,还包括数据质量与数据安全的领域诊断。

资产治理多维度输出
资产治理致力于将治理闭环能力开放。通过标准输出、定制产品、能力输出、构建协作机制等维度进行输出。


◆资产应用

资产应用通过全链路实现端到端打通,评估应用投入产出比,并进行安全的检测管控。

资产应用具体包括以下两部分内容:
资产应用全链路体系
通过全链路数据跟踪,将数据从获取到数据处理再到数据应用,实现端到端的打通。
资产应用产品化
围绕最终用户,以数据资产的本质为驱动力,提供应用分析产品。包括全链路“血缘”关系,清晰展示数据的来龙去脉;
全链路保障:让用户清楚知道各种保障措施和问题所在,以及为何资产应用能够稳定、健康的运行;
访问分析:全面分析数据应用到的产品及场景的被访问情况;
ROI评估:为用户指明当前产品或场景化应用的投入产出情况。
通过资产分析、资产治理、资产应用,我们努力让大数据从成本中心走向资产中心,让企业致力于数据资产建设和管理。让企业数据可获得全盘把握及全盘分析、清晰查看及快速使用、准确评估及合理应用、智能诊断及高效治理,让企业大数据释放出应有的价值。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理:让数据质量更好

    数据治理:让数据质量更好

    大数据时代数据产生的价值越来越大,基于数据的相关技术、应用形式也在快速发展,开发基于数据的新型应用已经成为高校信息化建设的一个重点领域。……查看详情

    发布时间:2019.02.12来源:亿信华辰浏览量:251次

  • 金融行业大数据标准体系设计

    金融行业大数据标准体系设计

    金融大数据标准体系可分为基础标准、业务标准、治理标准和技术标准四大类。各类标准之间相互联系、相互约束、相互补充,共同构成完整的统一体。同……查看详情

    发布时间:2019.12.27来源:CSDN浏览量:218次

  • 数据治理流程中,最重要的3点都在这

    数据治理流程中,最重要的3点都在这

    数据治理能够带来的好处就在于,更高效地帮助企业将数据价值转化成实际的业务价值。数据“井喷”仍在进行,机器学习、AI等这类十分依赖数据质量……查看详情

    发布时间:2021.05.10来源:亿信数据治理知识库浏览量:505次

  • 银行业数据治理还面临着四方面的挑战

    银行业数据治理还面临着四方面的挑战

    一是数据整合度不高。银行内部数据虽多,涉及各个业务条线、各个部门,但未经系统化的治理,数据分布零散化,搜集整合存在错配,未能实现大数据集……查看详情

    发布时间:2019.11.29来源:知乎浏览量:140次

  • 企业做好数据治理才能更快更好地推进数字化转型

    企业做好数据治理才能更快更好地推进数字化转型

    企业做好数据治理才能更快更好地推进数字化转型数据治理之“困”在谈到当前的数据治理之“困”时,主要有四方面:……查看详情

    发布时间:2019.12.12来源:知乎浏览量:123次

  • 2019年大数据发展趋势预测

    2019年大数据发展趋势预测

    九十年前,法国诗人保罗瓦列里写道:“未来不再像过去那样。”从00年代中期开始的大数据趋势也可以这么说。 面对崭新的2019年,Da……查看详情

    发布时间:2019.01.14来源:亿信华辰浏览量:115次

  • 美国数据治理有何新动向?

    美国数据治理有何新动向?

    大数据时代,美国高度重视数据资源的战略价值,相继出台国家战略,落实配套措施,系统推动本国大数据发展。通过加强数据安全保护,完善个人信息和……查看详情

    发布时间:2018.10.10来源:中国信息通信浏览量:166次

  • 数据治理是否灵活?

    数据治理是否灵活?

    许多组织现在认识到数据治理的必要性,但仍在努力寻找正确的方法来构建它。一个好的方法是——敏捷!……查看详情

    发布时间:2019.01.11来源:亿信华辰浏览量:132次

  • 指标管理实践技能:如何让同一套指标体系展示为不同的树形结构

    指标管理实践技能:如何让同一套指标体系展示为不同的树形结构

    企业的指标体系的建设和维护工作非常繁杂,指标的数据来源、指标公式的维护、指标数据的更新、指标数据的应用,往往涉及到企业的多个部门,这些部……查看详情

    发布时间:2021.02.06来源:知乎浏览量:126次

  • 业务系统的数据资产管理为什么这么难?

    业务系统的数据资产管理为什么这么难?

    如果你做过BI或大数据,一定会接触数据资产管理的一些概念,比如元数据,数据字典,血统分析等等,但你会发现,要做好大数据平台的数据资产管理……查看详情

    发布时间:2019.03.25来源:亿信华辰浏览量:166次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议