用于构建数据驱动型企业的敏捷数据治理基础

发布时间:2019.01.26来源:亿信华辰浏览量:140次标签:数据治理


数据驱动型企业是现代企业的基石,良好的数据治理是关键的推动因素。

近年来,我们看到创业公司利用数据在传统竞争对手之前抢占先机。Airbnb,Netflix和Uber等公司已成为家喻户晓的名字。虽然每个提供的服务差异很大,但这三个都被称为“技术”组织,因为数据是其运营不可或缺的组成部分。

与任何标准制定革命一样,各个领域的企业现在都在遵循这些例子。但这些组织需要理解的是,仅仅决定数据驱动,还是“做大数据”是不够的。

与任何战略或商业模式一样,建议采用最佳实践以确保努力是值得的,并尽可能高效地运作。事实上,它对数据尤其重要,因为管理不善的数据会导致上市时间变慢和安全性过度。此外,管理不善的数据会导致分析不准确和决策失误,由于计划阶段的不准确,错误的启动和浪费的周期而进一步阻碍了上市时间。

基本上是垃圾进入,垃圾出 - 所以对于企业来说,确保基础正确是非常重要的。要构建某些东西,您需要确切地知道您正在构建什么以及为什么要了解最佳进展方式。

数据治理2.0是潜在因素

良好的数据治理(DG)使每个相关的利益相关者 - 从高管到一线员工 - 能够发现,理解,治理和社交数据。然后,合适的人员可以访问正确的数据,因此更容易做出正确的决策。

传统上,DG包含治理目标,例如维护数据术语,数据字典和目录的业务术语表。它还启用了谱系映射和策略创作。

然而,数据治理1.0被IT留下来处理它。在背景,问责链和分析本身中往往存在差距。

Data Governance 2.0通过考虑数据现在渗透到企业的各个层面这一事实来解决这个问题。它允许更好的协作。

它为人们提供了与数据交互所需的环境以做出正确的决策,并记录数据的过程,确保问责制并遵守现有和即将出台的数据法规。

但是,除了在人与人之间进行更大的合作之外,它还允许部门之间更好的协作以及与其他技术的集成。

通过将数据治理与数据建模(DM),  企业架构  (EA)和  业务流程(BP)相集成  ,组织可以打破跨部门和技术孤岛,从而提高跨域的可见性和控制力。

通过利用通用元数据存储库和直观的基于角色和高度可配置的用户界面,组织可以保证每个人都在唱同一张音乐。

数据治理可实现更好的数据管理

Data Governance 2.0的协作特性是强大数据管理的关键推动因素。没有它,不同的数据管理计划可以并且经常会朝不同的方向发展。

这些孤岛通常源于使用不同工具,这些工具无法在负责个人数据管理计划的相关角色之间进行协作。这扼杀了数据分析的潜力,这是组织在当今市场条件下无法承受的。

在竞争激烈的市场中运营的企业需要各种优势:增长,创新和差异化。组织还需要一个完整的数据平台,因为数据参与业务的增长以及随后的频繁技术进步意味着市场环境的变化速度比以往任何时候都快。

通过整合DM,EA和BP,组织确保所有三项计划保持同步。然后,历史上由孤立的数据管理计划产生的常见问题不会出现。

以Data Governance 2.0为核心的统一方法允许组织:

  • 实现跨不同利益相关方的数据流畅性和问责制
  • 标准化和协调各种数据管理平台和技术
  • 满足合规性和法律要求
  • 降低与数据驱动的业务转型相关的风险
  • 实现企业敏捷性和数据使用效率。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 银行数据治理方法浅析

    银行数据治理方法浅析

    数据是银行最核心的资产,数据治理能成就银行的未来。数据治理是一个新兴的并且不断演进的概念,涉及数据质量、数据管理、数据政策、商业过程管理……查看详情

    发布时间:2019.02.21来源:知乎浏览量:156次

  • 数据沿袭工具如何促进数据治理策略

    数据沿袭工具如何促进数据治理策略

    企业可以通过跟踪数据更改的方式和时间来加强数据治理工作。专家David Loshin就如何使用数据沿袭产品提供建议。……查看详情

    发布时间:2019.03.26来源:亿信华辰浏览量:153次

  • 大数据治理——元数据是关键

    大数据治理——元数据是关键

    在大数据时代,当数据以多种格式分散在整个企业中并来自许多来源时,需要一种新的数据治理方法。……查看详情

    发布时间:2018.12.03来源:数据管理浏览量:112次

  • 大数据是大问题?组织需要为数据管理负责

    大数据是大问题?组织需要为数据管理负责

    如果数据收集在2018年让人们明白一件事的话,那就是使用数据的公司与商业模式依赖数据利用的公司之间存在一条明显而深刻的界线。由于剑桥分析……查看详情

    发布时间:2019.04.09来源:亿信华辰浏览量:122次

  • 数据治理过程中核心数据界定怎么破?

    数据治理过程中核心数据界定怎么破?

    数据治理过程中,在我们费了九牛二虎之力盘点出企业当前数据资产的家当,形成了数据资产的清单后,同时也会列明这个业务域的核心数据实体,这就碰……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:134次

  • 2025年大数据分析发展的预测

    2025年大数据分析发展的预测

    全球每天的互联网搜索、点击、分享、喜欢和刷卡都会产生大约2 5艾字节的数据。这仅仅是由于物联网推动的。IDC公司预测,到2025年数据量……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:118次

  • 大数据共享交换平台的功能需求

    大数据共享交换平台的功能需求

    大数据平台是集开发、配置、部署、管理、监控、安全于一体的数据交换全生命周期管理的数据交换平台。平台可快速构建、运行和管理分布式应用系统间……查看详情

    发布时间:2022.05.18来源:小亿浏览量:435次

  • 数据质量稳定提升方法:使用反馈循环

    数据质量稳定提升方法:使用反馈循环

    每个额外的数据源都给流程增加了更多的复杂性,并且至少在短期内,在流程自动化之前消耗了额外的时间。现在是时候这些数据专业人员可以专门回答业……查看详情

    发布时间:2021.04.23来源:亿信数据治理知识库浏览量:199次

  • 数据治理治什么?在哪治?怎么治?

    数据治理治什么?在哪治?怎么治?

    数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。其实在我看来,……查看详情

    发布时间:2020.06.24来源:知乎浏览量:116次

  • 数据治理的价值体系包括哪些方面?

    数据治理的价值体系包括哪些方面?

    数据治理的目标是通过对数据资产的有效管控持续创造价值,价值域通过对治理结果的有效整理,通过构建具体化的数据产品,实现上述的价值创造。那么……查看详情

    发布时间:2022.05.05来源:小亿浏览量:327次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议