用于构建数据驱动型企业的敏捷数据治理基础

发布时间:2019.01.26来源:亿信华辰浏览量:141次标签:数据治理


数据驱动型企业是现代企业的基石,良好的数据治理是关键的推动因素。

近年来,我们看到创业公司利用数据在传统竞争对手之前抢占先机。Airbnb,Netflix和Uber等公司已成为家喻户晓的名字。虽然每个提供的服务差异很大,但这三个都被称为“技术”组织,因为数据是其运营不可或缺的组成部分。

与任何标准制定革命一样,各个领域的企业现在都在遵循这些例子。但这些组织需要理解的是,仅仅决定数据驱动,还是“做大数据”是不够的。

与任何战略或商业模式一样,建议采用最佳实践以确保努力是值得的,并尽可能高效地运作。事实上,它对数据尤其重要,因为管理不善的数据会导致上市时间变慢和安全性过度。此外,管理不善的数据会导致分析不准确和决策失误,由于计划阶段的不准确,错误的启动和浪费的周期而进一步阻碍了上市时间。

基本上是垃圾进入,垃圾出 - 所以对于企业来说,确保基础正确是非常重要的。要构建某些东西,您需要确切地知道您正在构建什么以及为什么要了解最佳进展方式。

数据治理2.0是潜在因素

良好的数据治理(DG)使每个相关的利益相关者 - 从高管到一线员工 - 能够发现,理解,治理和社交数据。然后,合适的人员可以访问正确的数据,因此更容易做出正确的决策。

传统上,DG包含治理目标,例如维护数据术语,数据字典和目录的业务术语表。它还启用了谱系映射和策略创作。

然而,数据治理1.0被IT留下来处理它。在背景,问责链和分析本身中往往存在差距。

Data Governance 2.0通过考虑数据现在渗透到企业的各个层面这一事实来解决这个问题。它允许更好的协作。

它为人们提供了与数据交互所需的环境以做出正确的决策,并记录数据的过程,确保问责制并遵守现有和即将出台的数据法规。

但是,除了在人与人之间进行更大的合作之外,它还允许部门之间更好的协作以及与其他技术的集成。

通过将数据治理与数据建模(DM),  企业架构  (EA)和  业务流程(BP)相集成  ,组织可以打破跨部门和技术孤岛,从而提高跨域的可见性和控制力。

通过利用通用元数据存储库和直观的基于角色和高度可配置的用户界面,组织可以保证每个人都在唱同一张音乐。

数据治理可实现更好的数据管理

Data Governance 2.0的协作特性是强大数据管理的关键推动因素。没有它,不同的数据管理计划可以并且经常会朝不同的方向发展。

这些孤岛通常源于使用不同工具,这些工具无法在负责个人数据管理计划的相关角色之间进行协作。这扼杀了数据分析的潜力,这是组织在当今市场条件下无法承受的。

在竞争激烈的市场中运营的企业需要各种优势:增长,创新和差异化。组织还需要一个完整的数据平台,因为数据参与业务的增长以及随后的频繁技术进步意味着市场环境的变化速度比以往任何时候都快。

通过整合DM,EA和BP,组织确保所有三项计划保持同步。然后,历史上由孤立的数据管理计划产生的常见问题不会出现。

以Data Governance 2.0为核心的统一方法允许组织:

  • 实现跨不同利益相关方的数据流畅性和问责制
  • 标准化和协调各种数据管理平台和技术
  • 满足合规性和法律要求
  • 降低与数据驱动的业务转型相关的风险
  • 实现企业敏捷性和数据使用效率。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据整理——大数据治理的关键技术

    数据整理——大数据治理的关键技术

    数据是政府、企业和机构的重要资源。数据治理关注数据资源有效利用的众多方面,如数据资产确权、数据管理、数据开放共享、数据隐私保护等。从数据……查看详情

    发布时间:2019.11.21来源:CSDN浏览量:248次

  • 完善数据治理的制度设计

    完善数据治理的制度设计

    作为最具时代特征、最活跃的生产要素和价值创造来源,“数据”首次出现在《决定》的文本之中。这既反映了经济社会数字化转型不断加快的特征事实,……查看详情

    发布时间:2020.10.31来源:知乎浏览量:125次

  • 企业数据资产管理应该如何做?

    企业数据资产管理应该如何做?

    定义与提出:国外对“数据资产管理”的定义为:数据资产管理是规划、控制和提供数据及信息资产的一组业务职能,包括开发……查看详情

    发布时间:2020.08.14来源:知乎浏览量:162次

  • 深圳运用大数据治理城市经验被点赞

    深圳运用大数据治理城市经验被点赞

    央视《新闻联播》报道了深圳运用大数据提升城市治理现代化水平方面的新探索。报道指出,随着“数字政府”建设的不断推进,深圳的政务创新也渐入佳……查看详情

    发布时间:2018.09.25来源:深视新闻浏览量:129次

  • 企业数字化转型关键 ,数据治理需要关注什么?

    企业数字化转型关键 ,数据治理需要关注什么?

    2019年我国数字经济规模为35.8万亿元,产业数字化占数字经济的比例达到80.2%。新经济领域的高度数字化,通过传导至传统产业的转型升……查看详情

    发布时间:2020.11.08来源:知乎浏览量:156次

  • 数据治理:您需要了解的内容

    数据治理:您需要了解的内容

    数据治理:您需要了解的内容,持续的数据治理计划为遵守公司的战略计划提供了知识和制度基础。……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:127次

  • 国内数据治理平台厂商介绍

    国内数据治理平台厂商介绍

    睿治数据治理平台是北京亿信华辰软件有限责任公司完全自主研发的一站式综合数据治理整体解决方案,是一款面向全用户角色的、智能的、敏捷的数据全……查看详情

    发布时间:2019.09.19来源:知乎浏览量:201次

  • 构建金融大数据标准体系的意义和目标

    构建金融大数据标准体系的意义和目标

    随着政府职能的逐步简政放权,标准作为辅助行业管理、规范行业发展、形成规模化效应的重要手段,将在社会治理体系中发挥更重要的作用。为顺应形势……查看详情

    发布时间:2019.12.27来源:CSDN浏览量:157次

  • 数据治理在大数据领域的重要性

    数据治理在大数据领域的重要性

    即使在过去,企业也要面对超出其基础设施和流程处理能力的大量数据,更不用说要从数据中挖掘出对制定有效决策有实际价值的情报了。如今,随着种类……查看详情

    发布时间:2019.12.06来源:CSDN浏览量:125次

  • Gartner 2019年十大数据和分析技术趋势:增强型分析成为重要卖点

    Gartner 2019年十大数据和分析技术趋势:增强型分析成为重要卖点

    处于数据和分析位置的领导人必须审视这些趋势对业务带来的潜在影响,并相应调整业务模式和运营,否则就有可能失去竞争优势。 ……查看详情

    发布时间:2019.02.25来源:亿信华辰浏览量:138次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议