用于构建数据驱动型企业的敏捷数据治理基础

发布时间:2019.01.26来源:亿信华辰浏览量:101次标签:数据治理


数据驱动型企业是现代企业的基石,良好的数据治理是关键的推动因素。

近年来,我们看到创业公司利用数据在传统竞争对手之前抢占先机。Airbnb,Netflix和Uber等公司已成为家喻户晓的名字。虽然每个提供的服务差异很大,但这三个都被称为“技术”组织,因为数据是其运营不可或缺的组成部分。

与任何标准制定革命一样,各个领域的企业现在都在遵循这些例子。但这些组织需要理解的是,仅仅决定数据驱动,还是“做大数据”是不够的。

与任何战略或商业模式一样,建议采用最佳实践以确保努力是值得的,并尽可能高效地运作。事实上,它对数据尤其重要,因为管理不善的数据会导致上市时间变慢和安全性过度。此外,管理不善的数据会导致分析不准确和决策失误,由于计划阶段的不准确,错误的启动和浪费的周期而进一步阻碍了上市时间。

基本上是垃圾进入,垃圾出 - 所以对于企业来说,确保基础正确是非常重要的。要构建某些东西,您需要确切地知道您正在构建什么以及为什么要了解最佳进展方式。

数据治理2.0是潜在因素

良好的数据治理(DG)使每个相关的利益相关者 - 从高管到一线员工 - 能够发现,理解,治理和社交数据。然后,合适的人员可以访问正确的数据,因此更容易做出正确的决策。

传统上,DG包含治理目标,例如维护数据术语,数据字典和目录的业务术语表。它还启用了谱系映射和策略创作。

然而,数据治理1.0被IT留下来处理它。在背景,问责链和分析本身中往往存在差距。

Data Governance 2.0通过考虑数据现在渗透到企业的各个层面这一事实来解决这个问题。它允许更好的协作。

它为人们提供了与数据交互所需的环境以做出正确的决策,并记录数据的过程,确保问责制并遵守现有和即将出台的数据法规。

但是,除了在人与人之间进行更大的合作之外,它还允许部门之间更好的协作以及与其他技术的集成。

通过将数据治理与数据建模(DM),  企业架构  (EA)和  业务流程(BP)相集成  ,组织可以打破跨部门和技术孤岛,从而提高跨域的可见性和控制力。

通过利用通用元数据存储库和直观的基于角色和高度可配置的用户界面,组织可以保证每个人都在唱同一张音乐。

数据治理可实现更好的数据管理

Data Governance 2.0的协作特性是强大数据管理的关键推动因素。没有它,不同的数据管理计划可以并且经常会朝不同的方向发展。

这些孤岛通常源于使用不同工具,这些工具无法在负责个人数据管理计划的相关角色之间进行协作。这扼杀了数据分析的潜力,这是组织在当今市场条件下无法承受的。

在竞争激烈的市场中运营的企业需要各种优势:增长,创新和差异化。组织还需要一个完整的数据平台,因为数据参与业务的增长以及随后的频繁技术进步意味着市场环境的变化速度比以往任何时候都快。

通过整合DM,EA和BP,组织确保所有三项计划保持同步。然后,历史上由孤立的数据管理计划产生的常见问题不会出现。

以Data Governance 2.0为核心的统一方法允许组织:

  • 实现跨不同利益相关方的数据流畅性和问责制
  • 标准化和协调各种数据管理平台和技术
  • 满足合规性和法律要求
  • 降低与数据驱动的业务转型相关的风险
  • 实现企业敏捷性和数据使用效率。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 一文讲透数据治理核心指标

    一文讲透数据治理核心指标

    股份制改革对我国银行业来说只是一个开始,企业在风险管理、创造价值等方面还有很长的路要走。风险管理要求提供精准的数据模型、创造价值要求充分……查看详情

    发布时间:2020.06.19来源:CSDN浏览量:111次

  • 数据标准迎来“大考”,一个数据治理工具教各行各业轻松应对

    数据标准迎来“大考”,一个数据治理工具教各行各业轻松应对

    2020年6月22日-7月3日,国际电信联盟第十六研究组(简称ITU-TSG16)召开全体会议,来自中国、美国、德国、日本、韩国、巴西、……查看详情

    发布时间:2020.07.23来源:头条浏览量:99次

  • 良好数据治理的6步路线图

    良好数据治理的6步路线图

    今年早些时候,我们发现许多数据科学家将大部分时间花在“数据管理员”上 - 即分类和清理数据,而不是将其分析为可操作的见解。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:178次

  • 大数据资产管理总体框架概述

    大数据资产管理总体框架概述

    随着大数据时代的来临,对数据的重视提到了前所未有的高度,“数据即资产”已经被广泛认可。数据就像企业的根基,是各企业尚待发掘的财富,即将被……查看详情

    发布时间:2020.08.28来源:知乎浏览量:111次

  • 数据治理的发展历程

    数据治理的发展历程

    数据治理技术的发展使得其中最好的技术为组织的数据景观提供了完全的透明性,并为业务用户在搜索、访问和应用数据时提供了一种方便快捷的体验。……查看详情

    发布时间:2018.11.19来源:艾米丽华盛顿浏览量:136次

  • 数据治理与数据管理:有什么区别?

    数据治理与数据管理:有什么区别?

    如果今天有任何定义成功企业的东西,那就是公司数据的成功理解,使用和策略。了解您的数据并确定如何实施它会带来一系列问题,包括用户和利益相关……查看详情

    发布时间:2018.11.13来源:克里希基德浏览量:111次

  • 如何实现数据治理合作交流的4点建议

    如何实现数据治理合作交流的4点建议

    数据如同工业的石油一样,成为国家的重要资源,成为推动经济社会增长和发展的重要引擎。大数据、云计算、人工智能是大势所趋,发展这些技术也是人……查看详情

    发布时间:2019.10.25来源:知乎浏览量:98次

  • 数据治理模型 - 组织数据质量管理的责任

    数据治理模型 - 组织数据质量管理的责任

    企业需要数据质量管理(DQM),它结合了业务驱动和技术观点,以应对需要高质量企业数据的战略和运营挑战。迄今为止,公司已将DQM的责任主要……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:158次

  • 询问数据治理教练:我的数据治理计划需要多长时间?

    询问数据治理教练:我的数据治理计划需要多长时间?

    有多种不同的成熟度评估可用。如同所有的事物数据治理,我更喜欢一个简单的方法,你可以下载一个非常快速和容易的数据治理健康检查调查问卷免费在……查看详情

    发布时间:2019.03.22来源:亿信华辰浏览量:80次

  • 什么是数据交换管理平台?

    什么是数据交换管理平台?

    首先来个比较官方的定义,数据交换管理平台是指将分散建设的若干业务系统进行整合,以实现若干个业务子系统之间数据或者文件的传输和共享,提高信……查看详情

    发布时间:2020.04.22来源:知乎浏览量:100次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议