用于构建数据驱动型企业的敏捷数据治理基础

发布时间:2019.01.26来源:亿信华辰浏览量:147次标签:数据治理


数据驱动型企业是现代企业的基石,良好的数据治理是关键的推动因素。

近年来,我们看到创业公司利用数据在传统竞争对手之前抢占先机。Airbnb,Netflix和Uber等公司已成为家喻户晓的名字。虽然每个提供的服务差异很大,但这三个都被称为“技术”组织,因为数据是其运营不可或缺的组成部分。

与任何标准制定革命一样,各个领域的企业现在都在遵循这些例子。但这些组织需要理解的是,仅仅决定数据驱动,还是“做大数据”是不够的。

与任何战略或商业模式一样,建议采用最佳实践以确保努力是值得的,并尽可能高效地运作。事实上,它对数据尤其重要,因为管理不善的数据会导致上市时间变慢和安全性过度。此外,管理不善的数据会导致分析不准确和决策失误,由于计划阶段的不准确,错误的启动和浪费的周期而进一步阻碍了上市时间。

基本上是垃圾进入,垃圾出 - 所以对于企业来说,确保基础正确是非常重要的。要构建某些东西,您需要确切地知道您正在构建什么以及为什么要了解最佳进展方式。

数据治理2.0是潜在因素

良好的数据治理(DG)使每个相关的利益相关者 - 从高管到一线员工 - 能够发现,理解,治理和社交数据。然后,合适的人员可以访问正确的数据,因此更容易做出正确的决策。

传统上,DG包含治理目标,例如维护数据术语,数据字典和目录的业务术语表。它还启用了谱系映射和策略创作。

然而,数据治理1.0被IT留下来处理它。在背景,问责链和分析本身中往往存在差距。

Data Governance 2.0通过考虑数据现在渗透到企业的各个层面这一事实来解决这个问题。它允许更好的协作。

它为人们提供了与数据交互所需的环境以做出正确的决策,并记录数据的过程,确保问责制并遵守现有和即将出台的数据法规。

但是,除了在人与人之间进行更大的合作之外,它还允许部门之间更好的协作以及与其他技术的集成。

通过将数据治理与数据建模(DM),  企业架构  (EA)和  业务流程(BP)相集成  ,组织可以打破跨部门和技术孤岛,从而提高跨域的可见性和控制力。

通过利用通用元数据存储库和直观的基于角色和高度可配置的用户界面,组织可以保证每个人都在唱同一张音乐。

数据治理可实现更好的数据管理

Data Governance 2.0的协作特性是强大数据管理的关键推动因素。没有它,不同的数据管理计划可以并且经常会朝不同的方向发展。

这些孤岛通常源于使用不同工具,这些工具无法在负责个人数据管理计划的相关角色之间进行协作。这扼杀了数据分析的潜力,这是组织在当今市场条件下无法承受的。

在竞争激烈的市场中运营的企业需要各种优势:增长,创新和差异化。组织还需要一个完整的数据平台,因为数据参与业务的增长以及随后的频繁技术进步意味着市场环境的变化速度比以往任何时候都快。

通过整合DM,EA和BP,组织确保所有三项计划保持同步。然后,历史上由孤立的数据管理计划产生的常见问题不会出现。

以Data Governance 2.0为核心的统一方法允许组织:

  • 实现跨不同利益相关方的数据流畅性和问责制
  • 标准化和协调各种数据管理平台和技术
  • 满足合规性和法律要求
  • 降低与数据驱动的业务转型相关的风险
  • 实现企业敏捷性和数据使用效率。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 读懂工业大数据 这篇文章不得不看

    读懂工业大数据 这篇文章不得不看

    工业大数据是互联网、大数据和工业产业结合的产物,是中国制造2025、工业互联网、工业4.0等国家战略在企业的落脚点。……查看详情

    发布时间:2019.03.27来源:亿信华辰浏览量:131次

  • 2021权威解读:大数据治理包括哪些内容

    2021权威解读:大数据治理包括哪些内容

    ​近年来数据治理越来越受到国内外研究机构和学者的关注,在数据治理的框架设计等方面均取得了很多研究成果,并在商业、教育、医疗等以数据为核心……查看详情

    发布时间:2021.04.02来源:数据治理研究院浏览量:386次

  • 如何有效的进行数据交换管理

    如何有效的进行数据交换管理

    在现代信息社会,政府、企事业单位相继建立了各自的信息管理系统,这些独立的系统创建之初没有统一的规划,彼此之间数据的存储环境和存储形式差异……查看详情

    发布时间:2020.04.23来源:知乎浏览量:168次

  • 数据科学趋势在2019年

    数据科学趋势在2019年

    在谈到2019年要关注的主要数据科学趋势时,Kaggle的联合创始人兼首席执行官Anthony Goldbloom 预测,很快数据中心将……查看详情

    发布时间:2019.01.04来源:数据治理浏览量:103次

  • 从数据管理开始 才能为人工智能的成功做好准备

    从数据管理开始 才能为人工智能的成功做好准备

    如果你已经决定在今年做更多的人工智能实验,请首先仔细研究您的数据管理实践。……查看详情

    发布时间:2019.02.15来源:亿信华辰浏览量:135次

  • 2019—开启你的数据治理道路

    2019—开启你的数据治理道路

    如今,数字系统正在生产越来越多具有公认价值的数据,数据治理正变得越来越受欢迎和必要。然而,并非所有数据都被视为相同。……查看详情

    发布时间:2019.06.28来源:知乎浏览量:134次

  • 什么是数据治理?数据治理可以获得哪些优势?

    什么是数据治理?数据治理可以获得哪些优势?

    大多数组织了解他们的业务资产,包括对技术,人员,基础设施,库存等的投资。他们已经开发并实施了正式的政策,流程和系统来管理这些资产,以确保……查看详情

    发布时间:2018.12.04来源:Corey Mellick浏览量:201次

  • 数据湖架构 - 最佳实践指南

    数据湖架构 - 最佳实践指南

    实施正确的数据湖架构对于将数据转化为价值至关重要。无论您的数据湖中有多少数据,如果您缺乏有效管理数据、跟踪数据并确保其安全的架构特性,那……查看详情

    发布时间:2021.06.18来源:亿信数据治理知识库浏览量:158次

  • 银行数据治理工作的落地面临着众多的困难与挑战

    银行数据治理工作的落地面临着众多的困难与挑战

    数据治理越来越受到银行、监管机构乃至国家层面的重视。银行已经意识到高效的管理体系、统一的数据标准、良好的数据质量才是数据价值实现的基础。……查看详情

    发布时间:2020.07.09来源:小亿浏览量:135次

  • 通往更安全,更好数据的途径

    通往更安全,更好数据的途径

    企业在建立监督数据运营的理事会时面临的最大问题之一是原始事实和数据很少为分析做好准备。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:123次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议