用于构建数据驱动型企业的敏捷数据治理基础

发布时间:2019.01.26来源:亿信华辰浏览量:142次标签:数据治理


数据驱动型企业是现代企业的基石,良好的数据治理是关键的推动因素。

近年来,我们看到创业公司利用数据在传统竞争对手之前抢占先机。Airbnb,Netflix和Uber等公司已成为家喻户晓的名字。虽然每个提供的服务差异很大,但这三个都被称为“技术”组织,因为数据是其运营不可或缺的组成部分。

与任何标准制定革命一样,各个领域的企业现在都在遵循这些例子。但这些组织需要理解的是,仅仅决定数据驱动,还是“做大数据”是不够的。

与任何战略或商业模式一样,建议采用最佳实践以确保努力是值得的,并尽可能高效地运作。事实上,它对数据尤其重要,因为管理不善的数据会导致上市时间变慢和安全性过度。此外,管理不善的数据会导致分析不准确和决策失误,由于计划阶段的不准确,错误的启动和浪费的周期而进一步阻碍了上市时间。

基本上是垃圾进入,垃圾出 - 所以对于企业来说,确保基础正确是非常重要的。要构建某些东西,您需要确切地知道您正在构建什么以及为什么要了解最佳进展方式。

数据治理2.0是潜在因素

良好的数据治理(DG)使每个相关的利益相关者 - 从高管到一线员工 - 能够发现,理解,治理和社交数据。然后,合适的人员可以访问正确的数据,因此更容易做出正确的决策。

传统上,DG包含治理目标,例如维护数据术语,数据字典和目录的业务术语表。它还启用了谱系映射和策略创作。

然而,数据治理1.0被IT留下来处理它。在背景,问责链和分析本身中往往存在差距。

Data Governance 2.0通过考虑数据现在渗透到企业的各个层面这一事实来解决这个问题。它允许更好的协作。

它为人们提供了与数据交互所需的环境以做出正确的决策,并记录数据的过程,确保问责制并遵守现有和即将出台的数据法规。

但是,除了在人与人之间进行更大的合作之外,它还允许部门之间更好的协作以及与其他技术的集成。

通过将数据治理与数据建模(DM),  企业架构  (EA)和  业务流程(BP)相集成  ,组织可以打破跨部门和技术孤岛,从而提高跨域的可见性和控制力。

通过利用通用元数据存储库和直观的基于角色和高度可配置的用户界面,组织可以保证每个人都在唱同一张音乐。

数据治理可实现更好的数据管理

Data Governance 2.0的协作特性是强大数据管理的关键推动因素。没有它,不同的数据管理计划可以并且经常会朝不同的方向发展。

这些孤岛通常源于使用不同工具,这些工具无法在负责个人数据管理计划的相关角色之间进行协作。这扼杀了数据分析的潜力,这是组织在当今市场条件下无法承受的。

在竞争激烈的市场中运营的企业需要各种优势:增长,创新和差异化。组织还需要一个完整的数据平台,因为数据参与业务的增长以及随后的频繁技术进步意味着市场环境的变化速度比以往任何时候都快。

通过整合DM,EA和BP,组织确保所有三项计划保持同步。然后,历史上由孤立的数据管理计划产生的常见问题不会出现。

以Data Governance 2.0为核心的统一方法允许组织:

  • 实现跨不同利益相关方的数据流畅性和问责制
  • 标准化和协调各种数据管理平台和技术
  • 满足合规性和法律要求
  • 降低与数据驱动的业务转型相关的风险
  • 实现企业敏捷性和数据使用效率。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业数字化转型关键 ,数据治理需要关注什么?

    企业数字化转型关键 ,数据治理需要关注什么?

    2019年我国数字经济规模为35.8万亿元,产业数字化占数字经济的比例达到80.2%。新经济领域的高度数字化,通过传导至传统产业的转型升……查看详情

    发布时间:2020.11.08来源:知乎浏览量:156次

  • 探索数据生命周期管理的五个阶段

    探索数据生命周期管理的五个阶段

    企业并不总是需要所有数据 - 特别是当数据被认为过时时。但是,诉讼,审计或其他突发事件可以使其快速检索变得至关重要。考虑到这种可能性,许……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:127次

  • 数据治理理论

    数据治理理论

    数据治理是对数据资产的管理行使权力和控制的活劢集合(规划、监控和执行)。数据治理职能指导其他数据管理职能如何执行。……查看详情

    发布时间:2019.08.27来源:知乎浏览量:316次

  • 金融行业大数据标准体系设计

    金融行业大数据标准体系设计

    金融大数据标准体系可分为基础标准、业务标准、治理标准和技术标准四大类。各类标准之间相互联系、相互约束、相互补充,共同构成完整的统一体。同……查看详情

    发布时间:2019.12.27来源:CSDN浏览量:210次

  • 元数据管理101:什么,为什么以及如何

    元数据管理101:什么,为什么以及如何

    元数据管理已逐渐成为成功的数字化计划战略的最重要实践之一。随着大数据和云等分布式体系结构的兴起,可以创建孤立的系统和数据,元数据管理对于……查看详情

    发布时间:2018.12.19来源:数据治理浏览量:121次

  • 基于大数据的质量管理系统怎么选?

    基于大数据的质量管理系统怎么选?

    对于一个制造企业来说,生产是企业最大的动力,而生产质量也需要进行优化管理,一个好的质量管理会带给企业巨大的发展空间和利润价值。正因如此,……查看详情

    发布时间:2019.11.07来源:知乎浏览量:133次

  • 大数据:产业链条将更为完备

    大数据:产业链条将更为完备

    2018年,我国大数据产业呈现健康快速发展态势,包括大数据硬件、大数据软件、大数据服务等在内的大数据核心产业环节产业规模有望达到5700……查看详情

    发布时间:2019.02.20来源:亿信华辰浏览量:127次

  • 企业数据治理战略中的重要任务

    企业数据治理战略中的重要任务

    尽管许多企业的数据治理在被不经意间悄悄地忽视了,只有48%的企业拥有明确的规划或计划,但这并不影响数据治理的重要性,它聚焦于三个关键因素……查看详情

    发布时间:2020.07.14来源:知乎浏览量:141次

  • 有效数据治理计划在客户购买决策中的作用

    有效数据治理计划在客户购买决策中的作用

    数据治理计划将最大限度地提高数据的安全性,质量和价值,所有这些都构成了客户的信任。……查看详情

    发布时间:2019.01.23来源:亿信华辰浏览量:149次

  • 数据治理术语表

    数据治理术语表

    DGI提供了使用非技术语言解释的网络最佳数据相关术语集。在这里,您将找到不仅需要了解数据治理,还需要了解其他类型的程序和项目所需的信息,……查看详情

    发布时间:2019.03.18来源:亿信华辰浏览量:403次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议