数据分析加数据治理-让数据清澈如水

发布时间:2019.08.30来源:浏览量:148次标签:数据治理

在如今数据大浪潮下,如果您的业务很多,那么它就会大量堆积并且产生新的问题。我们生活在一个数据驱动的世界里。数据推动了我们从不同地方获得的建议,我们在网络上面得到的大量的信息,以及我们将在工作中建立和支持的产品和服务背后的决策。

1.数据分析
没有分析,我们从数据中得出的见解都不可能。我们经常切片,切块,测量和预测几乎所有的东西,因为数据可供分析。从理论上讲,所有这些分析都应该有助于业务。它应该确保我们创造正确的产品和服务,将它们推销给合适的人,并收取合适的价格。它应该建立一个忠诚的客户群,成为品牌大使,放大现有的营销努力,以促进更多的销售。

站在我们的立场,我们希望所有这些都发生,但是这所有这些分析都很昂贵。这不仅仅是分析软件的软件许可证成本,而且也是人的成本。例如,对数据科学家平均工资的估计可以超过118,000美元到131,000美元。许多企业也在探索或已经使用下一代分析技术,如人工智能或机器学习支持的预测分析或分析,那么这就意味着企业在这方面需要更多的投资。

如果您的企业正在分析的基础数据是糟糕的,那么您将丢掉所有这些投资。有一种说法吓到了今天参与分析的所有人:“垃圾进入,垃圾进出。”当糟糕的数据用于推动您的战略和运营决策时,您的不良数据突然成为业务的一个巨大问题。

所以当您为分析平台提供数据时,目标通常被称为“单一事实来源”,也称为您可以信任的数据,用于分析和创建推动业务发展的结论。尽管近年来业内人士都在谈论数据和分析,但许多企业仍未能获得分析投资的回报。与任何软件部署一样,这些分析项目有多种原因并未按计划进行。然而,在分析中,糟糕的数据甚至可以将技术方面的平稳部署转变为业务灾难。
什么是坏数据?这些数据无法帮助您的企业做出正确的决策。
因为它是:a.质量差,b.被误读,c.残缺,d.误用的。

2.数据治理
数据治理可帮助企业了解他们拥有的数据,数据有多好,数据库以及使用方式。今天很多人都在谈论数据治理,有些人正在将这种谈话付诸行动。但是经调查发现,52%的受访者表示数据对其组织至关重要,并且他们制定了正式的数据治理策略。但几乎同样多的受访者(46%)表示他们认识到数据对其组织的价值,但却没有正式的治理策略。

当数据治理帮助您的组织开发具有证明价值的高质量数据时,您的IT组织可以为业务构建更好的分析平台。数据治理有助于实现自助服务,这是当今许多企业分析的重要组成部分,因为它将数据和分析的力量交付给每天使用数据的人。一个运作良好的数据治理方案通过帮助IT组织确定并提出正确的数据给用户,并消除对数据的来源和质量混乱创造了真理的唯一版本。

数据治理还使最佳实践,主题专家和协作系统成为当今分析驱动型企业的标志。

与数据分析一样,许多早期的数据治理尝试未能实现预期的结果。他们的重点很狭隘,他们的倡导者往往难以向组织阐明数据治理的价值,这使得难以确保预算。有些组织甚至将数据治理视为数据安全的一部分,将数据保护到想要使用它的人无法访问的程度。

所有权问题也会影响早期的数据治理工作,因为IT和业务部门无法就哪一方负责定期影响这两方面的流程达成一致。如今,组织可以更好地解决这些所有权问题,因为许多组织正在采用新的公司结构来识别数据对现代企业的重要性。像首席数据官这样越来越多地处于业务方面的角色和数据保护官的角色比几年前更常见。

现代数据治理策略将自身融入业务及其基础架构中。它存在于企业体系结构,业务流程中,它使用可视化等技术帮助组织更好地理解数据资产之间的关系。也许最重要的是,现代数据治理方法正在进行中,因为组织及其数据不断变化和转变,因此他们的数据治理方法需要随着时间的推移进行调整。

数据治理的整体方法包括这些关键组件:

·一个企业架构组件是重要的,因为它把IT和业务,测绘公司的应用和相关技术和数据业务功能,他们能通过将数据治理与企业体系结构相集成,企业可以在与企业战略的连接环境中定义应用程序功能和相互依赖性,从而优先考虑技术投资,使其与业务目标和策略保持一致,从而产生预期的结果。

·一个业务流程和分析组件定义了如何将企业的运营,并确保员工理解并实施针对他们所负责的过程负责。企业可以清晰地定义,映射和分析工作流程并构建模型以推动流程改进,以及识别易受最大安全性,合规性或其他风险影响的业务实践,以及最需要控制以减少风险的方法。

·一个数据建模组件的设计和部署提供高品质的数据源和支持应用程序开发的新数据库的最佳方式。能够经济高效地从“随处”发现,可视化和分析“任何数据”,支持大规模数据集成,主数据管理,大数据和商业智能/分析,能够合成,标准化和存储数据源来自单一设计,以及跨项目的重用工件。

睿治数据治理平台是我公司完全自主研发的、开创性的、一站式综合数据治理整体解决方案。睿治是全国唯一实现了数据治理场景全覆盖的突破性产品,九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,以创新的方式保证了企业的业务数据在采集、汇总、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性,全面为客户量身打造符合自身特征的数据治理体系。 

睿治的通用扩展性之高,广受好评。平台基于各行业数据共性,采用成熟模块化设计理念,实现各模块功能各行业应用场景普遍适用;平台功能全面,灵活组装,可对数据从创建到消亡全过程监控和治理;平台提供丰富的服务接口,内置脚本支持,全面满足集成、扩展需要。  


(1)覆盖面之广国内少有睿治数据治理平台通过高度融合九大模块,实现了数据问题一个平台全解决,使客户可以从此告别东拼西凑尴尬局面,从而进一步提升了数据治理的全面性、连贯性、持续性,真正降低了成本。

(2)高扩展性确保发展无忧睿治的高扩展性不仅仅体现在:元数据模型、采集适配器、标准属性、质量规则等等能够想到的功能,平台都支持定制扩展,保证适应未来发展需要。同时还提供各种定制接口和调用接口服务,内置脚本支持,无论是第三方还是二次开发,扩展完全不存在技术阻碍。

(3)智能化、自动化保持领先元数据自动化采集、分析,数据自动交换、处理,数据质量智能监控、自动检查等等功能一直引领行业发展趋势。(4)高性能应对大数据浪潮睿治采用并行处理技术,通过内存计算,具备合理JAVA内存回收机制,支持集群部署方式,再配以不断在进步的核心算法,保证了平台能以极高的性能应对各种极限挑战。 

重大决策
在数据分析方面,数据治理是确保您使用正确的数据来推动战略和运营决策的最佳方式。这说起来容易做起来难,尤其是当你考虑流入现代组织的所有数据以及你将如何对它进行整理以找到好的,坏的和丑的时候。但是,一旦你这样做,你就可以使用数据分析来得出值得信赖的结论。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 在抗灾中积累治理“大数据”

    在抗灾中积累治理“大数据”

    每一次应对灾害,无论是经验还是教训,都会构成全国其他地方“诊治”灾害的“大数据”参考……查看详情

    发布时间:2018.09.25来源:人民日报浏览量:91次

  • 数据治理面临的挑战

    数据治理面临的挑战

    本部分的内容将数据治理面临的挑战分为两类,一类因“技术”而起,一类因“人”而起。由客观的技术问题对数据治理带来的挑战普遍较好解决,比如如……查看详情

    发布时间:2019.11.01来源:知乎浏览量:155次

  • 为数据管理/数据质量/问题分析提供资金

    为数据管理/数据质量/问题分析提供资金

    大多数具有正式数据治理工作的组织都对正在进行的数据管理工作给予了高度关注,解决了利益相关者之间发生自然冲突和/或数据质量工作时出现的问题……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:130次

  • 美国政府开放数据的元数据标准对我国的启示

    美国政府开放数据的元数据标准对我国的启示

    从 2012 年至今,我国已相继上线近 20 个地方政 府开放数据的门户网站,国家层面的统一数据门户 网站 www.data.gov.c……查看详情

    发布时间:2019.08.27来源:大连海事大学交通运输管理学院浏览量:151次

  • 数据交换平台的功能结构设计与实现

    数据交换平台的功能结构设计与实现

    数据交换平台是数据中心与其它应用系统沟通的桥梁,是进行数据交换的枢纽站。数据交换平台负责从各个业务系统采集数据,对数据进行清洗与整合,按……查看详情

    发布时间:2020.08.06来源:知乎浏览量:232次

  • 数据治理VS数据安全治理

    数据治理VS数据安全治理

    企业信息化建设是随着企业战略、业务形态、预算等多个方面不断迭代及变化的,所以在建设过程中难免出现阶段鸿沟,跨阶段整合难的现象,当企业以数……查看详情

    发布时间:2020.06.29来源:CSDN浏览量:125次

  • 大数据对社会有多大用处?

    大数据对社会有多大用处?

    规范性分析是商业智能(BI)中使用的四种大数据类型之一。大数据是一个描述大量数据的术语-结构化和非结构化-这些大量数据淹没了企业或任何数……查看详情

    发布时间:2018.12.29来源:数据治理浏览量:116次

  • 元数据:数据治理的燃料

    元数据:数据治理的燃料

    企业渴望从可提供竞争优势的数据中获取洞察力。实现这一目标的最常见障碍是数据质量差。如果输入到预测算法的数据是“脏的”(具有丢失或无效的值……查看详情

    发布时间:2019.08.02来源:知乎浏览量:137次

  • 数据治理成熟度评估

    数据治理成熟度评估

    数据治理成熟度反映了组织进行数据治理所具备的条件和水平,包括元数据管理、数据质量管理、业务流程整合、主数据管理和信息生命周期管理。……查看详情

    发布时间:2020.07.17来源:知乎浏览量:344次

  • 数据在数字化转型时代的作用

    数据在数字化转型时代的作用

    说今天的商业环境变得极具竞争力可能是轻描淡写的,那些没有不断重塑业务的公司 - 以核心数据 - 最终会在市场中断的同时观望。数据技术,科……查看详情

    发布时间:2019.03.12来源:亿信华辰浏览量:125次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议