重构数据治理的必要性

发布时间:2018.11.14来源:马克·皮科浏览量:58次标签:数据治理

拥有管理良好的数据资产并不能确切的保证你的生产业务价值。所以你就需要必备跨不同组件和活动的整体视图。那么这个时候数据治理就显得尤为重要。

在21世纪中期,企业开始认识到数据分析的前景,以及它如何帮助它们竞争。一场完美的数字风暴正在酝酿中。社会正处于由智能手机、社交媒体、数字娱乐、实时通信和基于消费者的电子商务推动的变革之中。出版物,如经济学家哈佛商业评论将这些机会呈现给高管们,认为这些机会是应该加以利用的战略机遇。

从2009年的金融危机中,企业开始在战略层面上拥抱其新的数据分析机会。2010年,人们相信,数据-以其所有新的、多样化的形式-将成为推动创新和竞争优势所需的燃料。很明显,企业业务的成功在很大程度上取决于作为燃料的输入数据的质量。

数据治理

几年前,政府为了消除安然(Enron)和世通(World com)等重大企会计丑闻所产生的负面影响,严格制定了政府报告义务。因而数据治理的学科开始逐渐形成。目前数据治理正逐步完善,其中已经形成了包括将数据转化为可信和有价值的公司资产所需的流程、组织结构和问责制。

有效的数据治理已经迅速成为数据分析成功的根本推动力。数据治理的范围包括了:数据资产、策略、生命周期阶段、分析用例等在内的流程。在细致定义的范围内,围绕存在的数据分配问责和策略。

分析采用

为便于讨论,假定数据分析的第一阶段采用时间为2008年至2018年。在这一阶段,数据治理演变为公司领导角色。它的重点是对界定数据资产的政策遵守情况进行监督和问责。并且制定和执行了改善数据可用性、可理解性、可访问性、安全性、相关性和质量的政策。任命了首席数据官和首席分析官等角色,为各组织提供一个集中于其数据治理挑战的企业中心。那么数据治理便从部门角度提升为组织视角。

目前,采用分析技术的新阶段正在发展。在数据分析投资中展示可衡量业务价值的更高标准正在迅速达成,并将延续到2018年以后。作为一个分析领导者,你必须面对新的挑战:理解价值创造的机制,向公司领导者展示可衡量的分析结果。这些新的要求是不断发展分析、成熟和提高期望的自然结果。

退一步讲,我们可以问一些尖锐的问题,例如:“在第一阶段的分析中,公司在创造价值方面取得了怎样的成功。”严格地说,从数据的角度来看,有传闻表明,与十年前相比,企业正在收购、存储、处理和交付更大的数据量。大数据浪潮将继续给组织带来更多的数据。然而,存储和处理更多的数据并不等于产生更多的价值。随着第一阶段数据治理程序的成熟,企业开始将数据作为一种受治理的企业资产来对待。

然而,仅仅拥有治理良好的数据资产并不能保证您正在产生业务价值。近期发表在麻省理工学院斯隆管理评论(S.Ransbotham,2016年3月)表明,从分析中产生的实际业务价值不再上升。它将以“业务价值、降低成本、收入增长、降低风险”的形式来改变你做出商业决策和采取行动的方式。这一形式可追溯到21世纪中期的数据分析,它承诺是创造增量和可衡量的商业价值。要实现这一承诺,你需要重新设想数据治理。

寻址业务价值

从数据中产生价值需要跨不同组成部分和活动的整体视图。您可以将此视图建模为价值链,有时称为值流。价值链显示了不同组成部分和活动之间的依赖关系,所有这些都有助于实现价值创造的最终目标。不过价值链跨越组织单位,需要协作和信任才能成功。

简化的价值链可以通过以下依赖关系来描述:


  • 价值是通过采取行动创造的。
  • 由行动决定。
  • 决策是通过分析来识别和评估的。
  • 分析是由基本信息支持的。
  • 基本信息是通过集成数据元素来创建的。


这意味着价值、行动、决策、分析、信息和数据代表了价值如何从数据流向数据使用到业务操作和结果。这条链包括数据、过程、技术、分析模型和人。

有效地从数据分析投资中创造价值需要多个组件(人员、数据、技术和流程)协同工作。这意味着数据分析的协调、规划和执行必须在价值链一级进行,而不仅仅是在数据组件一级进行。

数据治理改造

需要对数据治理进行重新描述,并将其转化为数据价值治理,这比仅管理数据的传统观点具有更广泛的关注点。数据价值治理包括数据治理的所有组件以及需要治理的更广泛的“事物”集。这些“事物”是通过定义数据价值链来定义的,如果企业要创建所需的业务结果,这些价值链必须是成熟的。

从数据治理的早期迭代中吸取的经验,例如虚拟团队、责任分配、政策制定、程序执行和执行-需要扩展并与描述数据驱动的业务模型的总体业务战略相结合,这种商业模式依赖于分析才能成功。

这种扩展的治理形式需要与您的公司战略相结合,并且必须处理棘手的问题,包括更改管理、技能开发、组织结构、政治、沟通和薪酬模式。

数据价值治理需要贯穿于整个价值链,共同为您的公司创造竞争地位。它应该被看作是将您的公司转变为一个由分析、机器学习和人工智能方面的进步所支持的数据驱动组织的引擎。

 


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 十大治理清单

    十大治理清单

    每年公司治理都会随着时代和投资者的需求而变化。今年,您的董事会应该关注几个趋势,以便始终领先于变革。……查看详情

    发布时间:2019.03.13来源:亿信华辰浏览量:47次

  • 用数据治理来拯救当今的大数据应用

    用数据治理来拯救当今的大数据应用

    当今社会,大数据的应用越来越广泛,企业和大数据的结合也越来越紧密。数据,俨然已成企业的重要资产之一。但是,大数据却并不是那么好管理,数据……查看详情

    发布时间:2019.08.15来源:知乎浏览量:54次

  • 企业应该将数据治理作为加速数字化转型的催化剂

    企业应该将数据治理作为加速数字化转型的催化剂

    随着许多业务系统和应用程序(包括采购,呼叫中心交互,网站访问,移动应用程序使用以及越来越多的物联网传感器和设备)产生的大量客户数据,应该……查看详情

    发布时间:2019.07.04来源:知乎浏览量:43次

  • 数据质量—并非所有数据都是平等的

    数据质量—并非所有数据都是平等的

    数据质量是调节数据以满足业务用户特定需求的过程。准确性,完整性,一致性,及时性,唯一性和有效性是数据质量的主要衡量标准。……查看详情

    发布时间:2019.04.04来源:亿信华辰浏览量:73次

  • 数据共享,奇葩证明的解药——亿信华辰

    数据共享,奇葩证明的解药——亿信华辰

    出境旅游,要求出具“母子关系证明”;市民迁户口,要证明“你爸是你爸”;车在大风中被树木刮伤,理赔要出示“风力证明”;去买房,要证明“结婚……查看详情

    发布时间:2019.03.04来源:亿信华辰浏览量:61次

  • 数据共享交换平台解决方案

    数据共享交换平台解决方案

    数据交换平台是业务系统间无缝共享数据、连通信息孤岛的高速公路,由数据交换管理模块、核心元数据审批模块、适配器模块、数据传输设计模块,权限……查看详情

    发布时间:2020.04.23来源:知乎浏览量:59次

  • 企业数字化转型需重视哪些问题

    企业数字化转型需重视哪些问题

    大数据可以帮助企业制定可行的战略规划,获取客户洞察力,支持客户购买行为,建立新的商业模式,从而赢得竞争优势。成功的企业数字案例显然有自己……查看详情

    发布时间:2019.11.07来源:知乎浏览量:53次

  • 怎么做好数据管理——亿信华辰

    怎么做好数据管理——亿信华辰

    数据化管理是指将业务工作通过完善的基础统计报表体系、数据分析体系进行明确计量、科学分析、精准定性,以数据报表的形式进行记录、查询、汇报、……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:63次

  • 国内主流的主数据管理方案

    国内主流的主数据管理方案

    主数据管理 (MDM) 是一种能够定义和管理组织中关键数据的全面方法。它提供跨整个企业的一站式可信任数据视图、敏捷的自助服务访问、基于分……查看详情

    发布时间:2020.05.07来源:知乎浏览量:196次

  • 商业银行数据治理从源头抓起 坚持数据标准先行

    商业银行数据治理从源头抓起 坚持数据标准先行

    商业银行数据治理是一门将数据视为一项资产的学科。它涉及到银行以资产的形式对数据进行优化、保护和利用的决策权利。糟糕的数据管理意味着糟糕的……查看详情

    发布时间:2019.09.04来源:知乎浏览量:54次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议