数据标准从发起到落地执行的四个阶段

发布时间:2020.09.24来源:知乎浏览量:138次标签:数据治理

数据标准的设计从需求发起到落地执行,一般需要经过标准编制、标准审查、标准发布、标准贯彻四个阶段:

1.数据标准编制:数据标准管理办公室根据数据需求开展数据标准的编制工作,确定数据数据项,数据标准管理执行组根据所需数据项提供数据属性信息,例如:数据项的名称、编码、类型、长度、业务含义、数据来源、质量规则、安全级别、域值范围等。数据标准管理办公室参照国际、国家或行业标准对这些数据项进行标准化定义并提交审核。注:如没有参考标准,则数据标准管理办公室可根据企业情况制定相应的企业级数据标准。

2.数据标准审查:数据标准管理委员会对数据标准初稿进行审查,判断数据标准是否符合企业的应用和管理需求,是否符合企业数据战略要求。如数据标准审查不通过,则有数据标准管理办公室进行修订,直到满足企业数据标准的发布要求。

3.数据标准发布:数据标准审查通过后,由数据标准管理办公室面向全公司进行数据标准的发布。该过程数据标准管理执行组需要配合进行数据标准发布对现有应用系统、数据模型的影响评估,并做好相应的应对策略。

4.数据标准贯彻:把已定义的数据标准与业务系统、应用和服务进行映射,标明标准和现状的关系以及可能影响到的应用。该过程中,对于企业新建的系统应当直接应用定义好的数据标准,对于旧系统应对一般建议建了相应的数据映射关系,进行数据转换,逐步进行数据标准的落地。

企业进行数据标准化时,除了对数据本身标准化规则构建外,相当大一部分需要考虑标准化流程的管理。而在管理过程中必然会涉及到新旧系统、不同部门、不同业务的冲突,这些冲突如果解决不好将会直接导致标准化的失败。所以,数据标准落地过程要充分做好影响评估和各干系方的沟通。

数据标准管理价值总结:
一个数据一般有业务属性、技术属性和管理属性组成,例如:数据项的业务定义、业务规则、质量规则为该数据的业务属性;数据项的名称、编码、类型、长度等为该数据的技术属性;数据的存储位置、管理部门、管理人员为该数据的管理属性。而数据标准管理的过程就是对数据以及数据的属性信息的标准化定义和应用的过程。

数据标准目标是为业务、技术和管理提供服务和支持。
业务方面:通过对实体数据的标准化定义,解决数据不一致、不完整、不准确等问题,消除数据的二义性,使得数据在企业有一个全局的定义,减少了各部门、各系统的沟通成本,提升企业业务处理的效率;标准统一的数据指标体系,让业务人员也能够轻松获取数据,并能够自助式的进行数据分析,为基于数据的业务创新提供可能。

技术方面:统一、标准的数据及数据结构是企业信息共享的基础;标准的数据模型和标准数据元为新建系统提供支撑,提升应用系统的开发实施效率;数据标准化清晰定义数据质量规则、数据的来源和去向、校验规则,提升数据质量。

管理方面:通过数据的标准化定义,明确数据的责任主体,为数据安全、数据质量提供保障;统一、标准的数据指标体系为各主题的数据分析提供支持,提升数据处理和分析效率,提供业务指标的事前提示、事中预警、事后提醒,实现数据驱动管理,让领导能够第一时间获取决策信息。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 大型传统企业如何利用数据管理系统把握好业务和数据的关系,逐步实现智能化转型?

    大型传统企业如何利用数据管理系统把握好业务和数据的关系,逐步实现智能化转型?

    关于“数据治理”的定义各大研究学派给出的都概念不尽相同,但看了这么多不同的说法小亿翻译成人话,其实就是要搞清楚:数据治理治什么?谁来治?……查看详情

    发布时间:2020.08.31来源:亿信华辰浏览量:130次

  • 数据治理—设计利用数据

    数据治理—设计利用数据

    围绕数据使用创建系统和流程是一回事,但企业需要确保其基础架构和团队随时可以利用可用信息。……查看详情

    发布时间:2019.04.04来源:亿信华辰浏览量:135次

  • 企业如何成功的实现数据治理?

    企业如何成功的实现数据治理?

    当下是一个大数据的时代,如果一个企业没有数据,那么在做决策时就缺乏数据的支持,但是如果企业有了数据,不对数据进行治理,那么就无法充分有效……查看详情

    发布时间:2019.07.18来源:知乎浏览量:147次

  • 灵活的分析数据生命周期?

    灵活的分析数据生命周期?

    受监管实验室数据完整性指南的要求之一是数据生命周期,涵盖监管记录的生死。数据生命周期在最近的MHRA数据完整性指南中定义为“从生成和记录……查看详情

    发布时间:2018.12.27来源:数据治理浏览量:175次

  • 在数据智能时代企业面对庞大的数据量如何高效进行数据治理?

    在数据智能时代企业面对庞大的数据量如何高效进行数据治理?

    在数据智能时代,对企业而言,“数据驱动业务”或者“数据即是业务”的理念逐渐成为业界的一种共识。然而,数据孤岛、数据标准不统一等问题在一定……查看详情

    发布时间:2020.06.23来源:知乎浏览量:108次

  • 数据管理和分析趋势正在改变世界

    数据管理和分析趋势正在改变世界

    现在的数据世界正在发生什么,它将如何影响2018年的市场?比如这些头条新闻:人工智能无处不在,并将改变一切;企业继续将他们的基础设施和数……查看详情

    发布时间:2019.01.03来源:bingdata123浏览量:133次

  • 扩展数据治理 推进数字化转型

    扩展数据治理 推进数字化转型

    数据正在重新定义我们的工作方式。当数据在上升至公司议程的同时,数据治理也得到了更多关注。数据治理正在迅速成为企业战略重点和不可或缺的业务……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:190次

  • 数据治理&数据仓库

    数据治理&数据仓库

    亿信睿智数据治理管理平台提供数据治理&数据仓库一体化解决方案,协助企业:建立企业内一致的信息视图,建立操作型数据的集中存储与分发的基础平……查看详情

    发布时间:2018.12.05来源:数据治理浏览量:275次

  • 数据治理和风险管理

    数据治理和风险管理

    风险管理对于任何数据驱动的业务都至关重要。前联邦调查局局长罗伯特·穆勒(Robert Mueller)曾说过,“只有两种类型的公司:那些……查看详情

    发布时间:2019.01.27来源:亿信华辰浏览量:159次

  • 企业如何快速启动数据治理项目呢?

    企业如何快速启动数据治理项目呢?

    企业在运营的过程中通常都会产生各种各样的数据问题,例如各部门数据不一致,导致汇总部门工作效率低,数据错误从而导致做出错误的判断等等,因此……查看详情

    发布时间:2019.07.29来源:头条浏览量:161次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议