数据标准从发起到落地执行的四个阶段

发布时间:2020.09.24来源:知乎浏览量:107次标签:数据治理

数据标准的设计从需求发起到落地执行,一般需要经过标准编制、标准审查、标准发布、标准贯彻四个阶段:

1.数据标准编制:数据标准管理办公室根据数据需求开展数据标准的编制工作,确定数据数据项,数据标准管理执行组根据所需数据项提供数据属性信息,例如:数据项的名称、编码、类型、长度、业务含义、数据来源、质量规则、安全级别、域值范围等。数据标准管理办公室参照国际、国家或行业标准对这些数据项进行标准化定义并提交审核。注:如没有参考标准,则数据标准管理办公室可根据企业情况制定相应的企业级数据标准。

2.数据标准审查:数据标准管理委员会对数据标准初稿进行审查,判断数据标准是否符合企业的应用和管理需求,是否符合企业数据战略要求。如数据标准审查不通过,则有数据标准管理办公室进行修订,直到满足企业数据标准的发布要求。

3.数据标准发布:数据标准审查通过后,由数据标准管理办公室面向全公司进行数据标准的发布。该过程数据标准管理执行组需要配合进行数据标准发布对现有应用系统、数据模型的影响评估,并做好相应的应对策略。

4.数据标准贯彻:把已定义的数据标准与业务系统、应用和服务进行映射,标明标准和现状的关系以及可能影响到的应用。该过程中,对于企业新建的系统应当直接应用定义好的数据标准,对于旧系统应对一般建议建了相应的数据映射关系,进行数据转换,逐步进行数据标准的落地。

企业进行数据标准化时,除了对数据本身标准化规则构建外,相当大一部分需要考虑标准化流程的管理。而在管理过程中必然会涉及到新旧系统、不同部门、不同业务的冲突,这些冲突如果解决不好将会直接导致标准化的失败。所以,数据标准落地过程要充分做好影响评估和各干系方的沟通。

数据标准管理价值总结:
一个数据一般有业务属性、技术属性和管理属性组成,例如:数据项的业务定义、业务规则、质量规则为该数据的业务属性;数据项的名称、编码、类型、长度等为该数据的技术属性;数据的存储位置、管理部门、管理人员为该数据的管理属性。而数据标准管理的过程就是对数据以及数据的属性信息的标准化定义和应用的过程。

数据标准目标是为业务、技术和管理提供服务和支持。
业务方面:通过对实体数据的标准化定义,解决数据不一致、不完整、不准确等问题,消除数据的二义性,使得数据在企业有一个全局的定义,减少了各部门、各系统的沟通成本,提升企业业务处理的效率;标准统一的数据指标体系,让业务人员也能够轻松获取数据,并能够自助式的进行数据分析,为基于数据的业务创新提供可能。

技术方面:统一、标准的数据及数据结构是企业信息共享的基础;标准的数据模型和标准数据元为新建系统提供支撑,提升应用系统的开发实施效率;数据标准化清晰定义数据质量规则、数据的来源和去向、校验规则,提升数据质量。

管理方面:通过数据的标准化定义,明确数据的责任主体,为数据安全、数据质量提供保障;统一、标准的数据指标体系为各主题的数据分析提供支持,提升数据处理和分析效率,提供业务指标的事前提示、事中预警、事后提醒,实现数据驱动管理,让领导能够第一时间获取决策信息。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理—构建你的数据屏障

    数据治理—构建你的数据屏障

    在快速发展的技术,大数据和高级分析的时代,数据治理在每个组织中都发挥着至关重要的作用,无论规模大小或行业如何。从定义元数据管理指南,到解……查看详情

    发布时间:2019.06.28来源:知乎浏览量:115次

  • 最全数据治理工具解析:数据治理工具的关键必备功能

    最全数据治理工具解析:数据治理工具的关键必备功能

    ​数据治理工具被定义为帮助创建和维护一组结构化策略、程序和协议的过程的工具,这些策略、程序和协议控制企业数据的存储、使用和管理方式。本文……查看详情

    发布时间:2021.07.22来源:亿信华辰数据治理浏览量:255次

  • 人工智能治理应当起步

    人工智能治理应当起步

    人工智能正在以前所未有的速度发展,大大超出了人们的预期,目前全球活跃人工智能企业达到了5000家左右。据相关预测,到2022年全球人工智……查看详情

    发布时间:2019.10.18来源:中国经营报浏览量:95次

  • 数据质量是什么,企业数据质量分析怎么做?

    数据质量是什么,企业数据质量分析怎么做?

    现在大数据时代,数据充斥于我们的生活、工作、学习中。随着数据增加的来源和速度越来越多、越来越快,企业纷纷在努力的解决出现的这些问题,以及……查看详情

    发布时间:2019.09.26来源:数据分析网浏览量:104次

  • 良好数据治理的6步路线图

    良好数据治理的6步路线图

    今年早些时候,我们发现许多数据科学家将大部分时间花在“数据管理员”上 - 即分类和清理数据,而不是将其分析为可操作的见解。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:188次

  • 数据治理到底应该怎么治?

    数据治理到底应该怎么治?

    数据到底怎么治,这确实是一个宽泛的话题,首先是要明确治理的内容。针对不同的治理内容采取不同的数据治理策略。关于小数据和大数据的治理侧重点……查看详情

    发布时间:2020.07.07来源:知乎浏览量:121次

  • 数据质量在数据治理中的重要意义

    数据质量在数据治理中的重要意义

    数据的质量问题从一定的角度反映出组织当中存在的一些问题,而问题的来源可能是数据流动,可能业务流程也可能源于管理问题等等,数据质量问题的分……查看详情

    发布时间:2020.01.10来源:CSDN浏览量:132次

  • 中小行纷纷设立数据治理专营部门

    中小行纷纷设立数据治理专营部门

    “数据治理基础建设缺失、人才匮乏、意识觉醒较晚。”一名来参加今日第三届中国数字银行论坛的西部中小银行人士,用了三个并列短句,来形容目前中……查看详情

    发布时间:2019.11.29来源:CSDN浏览量:113次

  • 为什么数据治理对企业这么重要?

    为什么数据治理对企业这么重要?

    现在很多企业都有自己的数据治理计划,从而更便捷的管理企业,那么所谓的数据治理其实就是我们常说的数据分析,将零散的数据汇总起来,进行统一的……查看详情

    发布时间:2019.07.17来源:知乎浏览量:127次

  • 数据管理政策:数据治理的基石

    数据管理政策:数据治理的基石

    您的组织可能认为或可能不认为您需要,但我在此告诉您,数据管理策略是管理企业数据资产的基石。……查看详情

    发布时间:2019.01.22来源:亿信华辰浏览量:156次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议