数据治理是一种数据管理概念-维基百科

发布时间:2018.11.12来源:维基百科浏览量:110次标签:数据治理

       数据治理是一种数据管理概念,涉及使组织能够确保在数据的整个生命周期中存在高数据质量的能力。数据治理的关键重点领域包括可用性,可用性,一致性,数据完整性和数据安全性,并包括建立流程以确保整个企业的有效数据管理,例如对数据质量差的负面影响负责,并确保数据企业可以使用整个组织。
       一个数据管家是确保数据治理流程遵循,指导执行,并建议改进数据治理流程的作用。
       数据治理包括在整个企业中创建一致和正确处理组织数据所需的人员,流程和信息技术。它为所有数据管理实践提供了必要的基础,策略和结构,以确保数据作为资产进行管理并转化为有意义的信息。可以在企业的所有级别定义目标,这样做可以帮助那些将使用它们的人接受过程。一些目标包括
       提高决策的一致性和信心
       降低监管罚款的风险
       提高数据安全性,定义和验证数据分发政策的要求
       最大化数据的创收潜力
       指定信息质量的责任
       通过监督人员实现更好的规划
       最大限度地减少或消除返工
       优化员工效率
       建立流程绩效基准以实现改进工作
       承认并保持所有收益
       这些目标通过数据治理计划或使用变更管理技术的计划的实施来实现。
       当公司希望或需要获得对数据的控制时,他们会授权员工,建立流程并从技术中获得帮助。
       据一家供应商称,数据治理是一种质量控制规程,用于评估,管理,使用,改进,监控,维护和保护组织信息。它是一个信息相关过程的决策权和责任系统,根据商定的模型执行,描述谁可以采取什么行动与什么信息,什么时候,在什么情况下,使用什么方法。
       数据治理驱动程序
       虽然数据治理计划可以通过提高数据质量的愿望来推动,但它们通常由响应外部法规的C级领导者推动。在CIO WaterCooler社区最近的一份报告中,54%表示关键驱动因素是流程效率; 39% - 监管要求; 只有7%的客户服务。[6]这些法规的例子包括萨班斯 - 奥克斯利法案,巴塞尔协议I,巴塞尔协议II,HIPAA,GDPR, cGMP [7]以及许多数据隐私法规。为了遵守这些法规,业务流程和控制需要正式的管理流程来管理受这些法规约束的数据。[8]成功的计划确定对监管和执行领导有意义的司机。
       外部法规中的共同主题集中在管理风险的需要上。风险可能是财务错报,无意释放敏感数据或关键决策的数据质量差。管理这些风险的方法因行业而异。通常引用的最佳实践和指南的示例包括COBIT,ISO / IEC 38500等。法规和标准的激增给数据治理专业人员带来了挑战,特别是当多个法规与所管理的数据重叠时。组织经常启动数据治理计划以应对这些挑战。
       数据治理举措
       数据治理计划通过指派负责数据准确性,完整性,一致性,及时性,有效性和唯一性的团队来提高数据质量[9]。该团队通常由执行领导,项目管理,业务线经理和数据管理员组成。该团队通常采用某种形式的方法来跟踪和改进企业数据,例如六西格玛,以及用于数据映射,分析,清理和监控数据的工具。
       数据治理计划可能旨在实现一系列目标,包括为内部和外部客户提供更好的可视性(例如供应链管理),遵守法规,在公司快速增长或公司合并后改善运营,或者提高效率企业知识工作者通过减少混淆和错误并增加其知识范围。许多数据治理计划也受到过去在部门级别修复信息质量的尝试的启发,导致不一致和冗余的数据质量流程。大多数大公司都有许多无法轻松共享信息的应用程序和数据库。因此,大型组织内的知识工作者通常无法获得最佳工作所需的信息。当他们可以访问数据时,数据质量可能很差。通过设置数据治理实践或公司数据权威,可以减轻这些问题。
       数据治理计划的结构不仅会随着组织规模的不同而变化,而是与期望的目标或努力的“重点领域” [10]不同。
       数据治理举措的实施可能在范围和来源方面有所不同。有时,会出现执行任务以启动企业范围的努力,有时候授权将是创建一个或多个范围和目标有限的试点项目,旨在解决现有问题或展示价值。有时,一项计划将在组织的层次结构中起源较低,并将在有限的范围内部署,以向组织中较高层的潜在赞助商展示价值。从一次性IT系统的审查到跨组织的计划,实施的初始范围也可能有很大差异。
       成功的数据治理计划的领导者于2006年12月在佛罗里达州奥兰多举行的数据治理会议上宣布,数据治理的沟通率在80%到95%之间。“ [11]这表明,数据的许多目标都是给定的。治理计划必须使用适当的工具来完成。许多供应商现在将他们的产品定位为数据治理工具;由于各种数据治理计划的不同重点领域,任何给定的工具可能适合也可能不适合,此外,许多工具是由于治理工具可以满足治理需求和需求,因此不会进行销售


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 如何降低BI系统建设风险?数据治理告诉你答案

    如何降低BI系统建设风险?数据治理告诉你答案

    如何降低BI系统建设风险?如何更好地管理和控制数据,做好数据体系建设,而非打造一个又一个割裂孤立的系统?这其中数据分析与数据治理双翼并行……查看详情

    发布时间:2021.03.23来源:亿信数据治理研究院浏览量:513次

  • 数据治理流程中,最重要的3点都在这

    数据治理流程中,最重要的3点都在这

    数据治理能够带来的好处就在于,更高效地帮助企业将数据价值转化成实际的业务价值。数据“井喷”仍在进行,机器学习、AI等这类十分依赖数据质量……查看详情

    发布时间:2021.05.10来源:亿信数据治理知识库浏览量:434次

  • 人工智能商业化提速 创新奇智瞄准三大场景万亿市场

    人工智能商业化提速 创新奇智瞄准三大场景万亿市场

    “接下来的AI投资就是要去跟中国各行各业进行结合,把中国的后端效率大幅改进。而这个机会将不会小于过去几年阿里、腾讯那些前端的互联网巨头所……查看详情

    发布时间:2019.01.27来源:亿信华辰浏览量:117次

  • 深入浅出元数据及元数据管理

    深入浅出元数据及元数据管理

    大数据时代下,数据已被公认为一项重要的资产。而元数据管理作为数据管理框架中一项重要的管理职能,也越来越多的出现在大家的视野中。但是对于元……查看详情

    发布时间:2019.10.24来源:亿信华辰浏览量:97次

  • 数据治理的主战场,商业智能还是数据挖掘?

    数据治理的主战场,商业智能还是数据挖掘?

    数据治理这门学问,入手极易,精通极难。说说经验吧,数据治理强调两点,一是高层支持,二是各部门广泛参与。组织内数据治理各项工作的开展都要处……查看详情

    发布时间:2019.02.21来源:知乎浏览量:117次

  • 数据治理金融行业解决方案

    数据治理金融行业解决方案

    我国银行数据现状1、缺乏数据梳理,造成行领导看到的数据相互冲突和矛盾 2、业务职能不清晰或相互重叠,观察数据视角不尽相同,缺少数据标准与……查看详情

    发布时间:2019.08.26来源:知乎浏览量:145次

  • 数据治理委员会:指导原则

    数据治理委员会:指导原则

    数据所有权 指定义与特定数据集相关的各种责任级别。讨论谁负责特定的数据任务已经使我们机构的数据维护和准确性变得更加简单。……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:100次

  • 企业数据治理到底怎么做?

    企业数据治理到底怎么做?

    数据治理对于确保数据的准确、适度分享和保护是至关重要的。有效的数据治理计划会通过改进决策、缩减成本、降低风险和提高安全合规等方式,将价值……查看详情

    发布时间:2019.08.30来源:知乎浏览量:121次

  • 数据治理研究述评

    数据治理研究述评

    数据治理是数据科学时代关注的研究课题,对数据治理的概念、体系、内容和应用的相关研究进行述评,以期将数据治理研究引向深入。……查看详情

    发布时间:2019.08.27来源:南京大学信息管理学院浏览量:194次

  • 数据治理、共享交换、数据仓库、数据中心的关系

    数据治理、共享交换、数据仓库、数据中心的关系

    建数据中心离不开数据,以前设计数据库都是从事务性数据库考虑(做的都是业务系统,思维模式太固定了),没有从数据仓库的角度来统管分析。以下是……查看详情

    发布时间:2019.08.07来源:CSDN浏览量:180次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议