数据质量包含的要素有哪几点

发布时间:2022.02.17来源:小亿浏览量:588次标签:数据治理

数据是企业最有价值的资产之一,越来越多的企业认识到了数据的重要性。企业的数据质量与企业经营业绩之间有着直接的关系。高质量的数据可以保持公司的竞争力,在经济动荡时期立于不败之地。但数据在为企业带来业务的同时也带来了一定的风险来源,低质量数据往往会导致错误的业务决策。能够为企业提供洁净、结构清晰的数据,是企业开发业务系统、提供数据服务、发挥数据价值的必要前提。有了普遍和深入的数据质量,企业就可以随时信任所有数据,满足所有需要。

数据质量评估标准

规范性:用于度量哪些数据未按统一格式存储。

完整性:用于度量哪些数据不可用或者哪些数据丢失了。

准确性:用于度量哪些数据是超期的,或者哪些数据和信息是不正确的。

一致性:用于度量哪些数据的值或属性在信息含义上是冲突的。 

关联性:用于度量哪些关联的数据未建立索引或者缺失。

唯一性:用于度量数据的哪些属性是重复的或者哪些数据是重复数据。

数据质量问题的来源

数据质量问题按照来源和具体原因,可以分为技术、信息、管理、流程四个问题域。

技术问题域

技术类问题产生的直接原因是技术实现上的某种缺陷,由于具体数据处理的各技术环节的异常造成的数据质量问题。数据质量问题的产生环节主要包括数据获取、数据创建、数据装载、数据传递、数据使用、数据维护等方面的内容。

信息问题域

信息类问题是由于对数据度量标准以及数据本身的描述理解的偏差而造成的数据质量问题。产生这部分数据质量问题的原因主要有:数据度量的各种性质得不到保证和变化频度不恰当、元数据描述及理解错误等。

管理问题域

管理类问题是指由于管理机制方面及人员素质的原因造成的数据质量问题,如培训和奖励、人员管理等方面的措施不当导致的管理缺失。

流程问题域

流程类问题是指由于人工操作流程和系统作业流程设置不当造成的数据质量问题,主要来源于主题分析数据的创建流程、装载流程、传递流程、使用流程、维护流程和稽核流程等各环节。

企业应该如何提升数据质量

亿信华辰自主研发的数据质量管理平台EsDataClean,一站式轻松搞定质检全过程,能够有效地管理与掌控数据质量,提高业务数据的正确性、适时性、完全性、一致性与相关性。

智能全面的检查调度

亿信华辰数据质量管理平台提供从标准定义、质量监控、绩效评估、质量分析、质量报告、重大问题及时告警、流程整改发起、系统管理等数据质量管理全过程的功能。可通过事先定义好的规则、调度时间、工作流程、预警条件,让质检方案自动完成数据的质量检查,极大的减少人力的投入和过程干预,提升效率,减少误差。当问题数据超过阀值时,可及时告警,让用户及时了解到数据的检查结果,避免重大问题的延误。

图片1.png

智能推进问题数据整改

智能数据质量检查调度;通过事先定义好的规则、调度时间、工作流程,自动完成数据的质量检查,极大的减少人力的投入和过程干预,提升效率,减少误差。

重大问题及时告警;对质量检查的结果提供多方式(界面、邮件、短信)告警,让用户及时了解到系统检查结果,避免重大问题的延误。

一键生成质量报告和评估结果;系统通过数理统计、数据分析等技术,根据事先定义好的模板,自动生成质量报告和绩效考评结果。

图片2.png

完善丰富的数据质量评估体系

亿信数据质量管理平台(EsDataClean)包含丰富的质量评价方法,并且易于扩展。系统支持数十种质量评价算法技术,满足业务系统运行、数据中心建设、数据治理过程中各类规则的定义,并可实现跨数据源的对比分析;支持通过XML扩展,可完全适应企业未来的数据质量管理需求的变化。

图片3.png

详尽灵活的质检结果

自动生成每个质检方案的明细结果表,并允许用户根据分析需要对明细结果表字段进行自定义,从而为用户进行丰富多样的数据质量分析提供数据。

支持整改计划管理,保证检查出来的数据质量问题能落实到地区、部门、个人,从而让数据质量问题真正得到解决。

支持问题数据的智能修复,可以对空值、值域、规范(身份证、日期、全半角)这些规则进行修复。

图片5.png

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 敏捷/精益数据治理最佳实践

    敏捷/精益数据治理最佳实践

    数据治理 的目标 是确保组织内的质量,可用性,完整性,安全性和可用性。你对此的看法取决于你。许多传统的数据治理方法似乎在实践中都很困难,……查看详情

    发布时间:2018.11.20来源:数据治理浏览量:107次

  • 数据治理的7大误区

    数据治理的7大误区

    大数据时代,数据成为社会和组织的宝贵资产,像工业时代的石油和电力一样驱动万物,然而如果石油的杂质太多,电流的电压不稳,数据的价值岂不是大……查看详情

    发布时间:2018.11.30来源:51cto浏览量:114次

  • 用数据治理来拯救当今的大数据应用

    用数据治理来拯救当今的大数据应用

    当今社会,大数据的应用越来越广泛,企业和大数据的结合也越来越紧密。数据,俨然已成企业的重要资产之一。但是,大数据却并不是那么好管理,数据……查看详情

    发布时间:2019.08.15来源:知乎浏览量:94次

  • 数据资产管理领域重要的三个方向

    数据资产管理领域重要的三个方向

    数据资产管理领域重要的三个方向包括:资产分析、资产治理、资产应用,并需要基于这三个方向的技术研究和实战,将流程、经验、标准和规范等产品化……查看详情

    发布时间:2020.11.06来源:知乎浏览量:84次

  • 快速理解数据仓库、数据湖、数据工厂、数据中台

    快速理解数据仓库、数据湖、数据工厂、数据中台

    数据生产的整个链条中,对于如何筑湖、如何选址建厂、按什么工序加工、以及如何配送,这是技术部门的事情,而“数据半成品”的沉淀和积累,却不是……查看详情

    发布时间:2021.04.13来源:亿信数据治理知识库浏览量:165次

  • 数据质量包含的要素有哪几点

    数据质量包含的要素有哪几点

    数据是企业最有价值的资产之一,越来越多的企业认识到了数据的重要性。企业的数据质量与企业经营业绩之间有着直接的关系。高质量的数据可以保持公……查看详情

    发布时间:2022.02.17来源:小亿浏览量:588次

  • 您是将数据视为资产吗?

    您是将数据视为资产吗?

    您可以做的最好的事情是鼓励以数据为中心的文化,实现安全和隐私的重要性,以及了解数据对您组织的成功至关重要。 这是我们不断听到的一句话,……查看详情

    发布时间:2018.12.28来源:数据治理浏览量:88次

  • 数据治理为什么成为企业必备?

    数据治理为什么成为企业必备?

    基本概念什么是数据治理?答:又叫”数据管控”。引用《DAMA数据管理知识体系指南》一书给出的定义:数据治理是对数……查看详情

    发布时间:2020.07.29来源:CSDN浏览量:154次

  • 用于增强数据治理和法规遵从性的容器

    用于增强数据治理和法规遵从性的容器

    在今天分散的存储基础架构中,审计人员如何评估企业数据的使用?总之,很难!……查看详情

    发布时间:2019.03.11来源:亿信华辰浏览量:132次

  • 两会各地人大代表对于大数据都关心什么?

    两会各地人大代表对于大数据都关心什么?

    两会的召开,各地人大代表针对各个领域、行业、产业纷纷提出了许多具有高价值的议题。针对不同地区的情况与发展势态,各地代表对于大数据的运用与……查看详情

    发布时间:2019.03.11来源:大数据浏览量:118次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议