政府如何进行数据治理

发布时间:2021.08.30来源:亿信华辰浏览量:253次标签:数据治理

大数据不仅是一种技术,更是一种思维、模式和方法。数据资源已成为重要的国家战略资源,数据资源开发利用能力体现着一个国家的经济实力、科技实力和综合国力,对国家战略、发展和安全具有重要意义。我国正处于工业社会向信息社会的加速转型期,信息科技的发展为政府数据治理提供了较为成熟的环境。像政府部门和机构会涉及到各业务系统的管理以及满足公众服务的人口、法人的数据整合,在数据抽取、清洗、存储和提供服务等各个环节会遇到很多难点,构建一个体系化的数据治理平台势在必行。更重要的是政府掌握全社会重要核心的、高价值的数据,如何通过有效管理,进行共享开放与协同,释放背后价值,赋能管理、服务决策,推动治理能力的提升对于我们国家至关重要。


政府部门该如何进行数据治理


一、 需求调研


由于管理与技术差异化较强,不同政府部门建安全建设不一。需要进行需求调研,主要从管理、业务、技术,三个方面进行,管理与技术主要从现有体系下,如何体现数据安全内容,在数据生命周期下如何进行决策管理及技术支撑。


二、制定数据治理策略


针对需求调研和个性化要求,形成整体的规划设计,该设计需要从管理、技术、运维、标准等方面入手,既要有全面性、深入性,又要有一定灵活性以便后期扩展。在数据治理主席和专家的指导下,基于对业务数据的理解之上,由治理委员会维护,来把控其所有权和控制权,确定角色分工和管理范围并形成从上而下统一的数据治理认知。最后,达成政府和企业机构的业务目标,从而支撑数据管理,促进数据的应用和服务。


三、建立数据模型


数据建模是数据治理的重要工作,也是数据仓库项目能取得成功的关键。但政府大数据主要是将政务管理和服务过程中的数据进行汇聚,传统意义上的数据建模在这个领域的作用并不是特别明显。在这种情况下,对信息的分类更加重要,可以借鉴标签化手段,将表、字段、文件等打标签,通过标签让数据使用者可以便捷地检索数据。


四、数据治理实施


依据规划设计进行治理实施。数据安全治理实施可分为5个阶段。


1、数据清洗融合。数据清洗是政府大数据相关标准中经常提到的一个概念,但在实践当中,能经常用到的清洗也就是去重、去空等,更加偏业务化的清洗规则难以应用。因此,在实践当中,更加可行的是应用“一数一源”原则,将个别问题数据利用主数据的思想进行补正,服务上层的数据分析和应用。比如,基于人的身份证号,实现户籍、婚姻、社保等的打通,为政务服务提供数据支撑。在这个原则下,数据清洗融合的能力,就是从政务数据中提炼出来的数据标准的丰富程度,能在多大程度上界定出“一数一源”。


2、数据挖掘。通过机器学习算法,实现数据治理过程的智能化,也是数据治理成果的一个亮点,包括自动标签、自动清洗融合等,在这个过程中,可以沉淀出不少的算法、规则等。


3、数据可视化。主要为加强数据流动可视,实现数据访问、敏感数据访问等数据流向可视,其主要目的为项目快速呈现价值,便于后期项目容易推进。


4、数据可管控。通过流向可视化后,需要加强数据管控能力,通过数据可视化发现问题后,需要通过及时、直接的管控手段实现快速介入,所以第二阶段重点为数据管控能力的提升。


5、数据安全体系化。该阶段需要根据前期实施过程中所遇见的问题,不断完善标准体系,实现技术、运维、标准的融合,达到安全治理体系化效果,实现“表里如一”。


总结


政府想要构建符合自身业务情况的数据治理体系,那么一个成熟的数据治理平台是必不可少的。睿治智能数据治理平台由亿信华辰自主研发,是一款融合数据治理十大产品模块,覆盖数据全生命周期管理的应用平台,也是目前国内功能齐全的数据治理工具,助力数据标准落地,提升数据质量,实现数据资产融合,快速满足政府各类不同的数据治理场景。

数据治理框架图.jpg

 


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 浅谈数据治理的发展趋势

    浅谈数据治理的发展趋势

    随着大数据技术的飞速发展,大数据已经融入到了各行各业,为了能让各企业的数据资产得到充分的利用,数据治理非常重要,如今数据治理已经逐渐成为……查看详情

    发布时间:2019.07.17来源:知乎浏览量:124次

  • 数据治理:让数据质量更好

    数据治理:让数据质量更好

    大数据时代数据产生的价值越来越大,基于数据的相关技术、应用形式也在快速发展,开发基于数据的新型应用已经成为高校信息化建设的一个重点领域。……查看详情

    发布时间:2019.02.12来源:亿信华辰浏览量:251次

  • 怎样避免数据治理里面的坑?

    怎样避免数据治理里面的坑?

    数据治理是一项长期而繁杂的工作,很多时候大家都为如何做好数据治理而感到困惑,甚至很多时候对此失去了信心。怎么避免数据治理这些问题?……查看详情

    发布时间:2018.12.10来源:CSDN浏览量:190次

  • 敏捷/精益数据治理最佳实践

    敏捷/精益数据治理最佳实践

    数据治理 的目标 是确保组织内的质量,可用性,完整性,安全性和可用性。你对此的看法取决于你。许多传统的数据治理方法似乎在实践中都很困难,……查看详情

    发布时间:2018.11.20来源:数据治理浏览量:130次

  • 数据治理面临的挑战

    数据治理面临的挑战

    本部分的内容将数据治理面临的挑战分为两类,一类因“技术”而起,一类因“人”而起。由客观的技术问题对数据治理带来的挑战普遍较好解决,比如如……查看详情

    发布时间:2019.11.01来源:知乎浏览量:188次

  • 做好数据治理,助力政府治理体系和治理能力现代化

    做好数据治理,助力政府治理体系和治理能力现代化

    当前,数据及其技术的融合应用在政府经济调节、市场监管、社会管理、公共服务、生态环境保护等各项工作中强劲助攻、潜力无限。但由于数据是新型生……查看详情

    发布时间:2020.04.02来源:知乎浏览量:169次

  • 大数据时代,用户不能成为“透明人”!

    大数据时代,用户不能成为“透明人”!

    移动互联网时代,智能手机如同人的体外器官,而手机上安装的APP就像组成细胞。可以说,过好移动生活,首先从用好智能手机的APP开始。……查看详情

    发布时间:2019.04.04来源:大数据浏览量:105次

  • 数据治理管理措施

    数据治理管理措施

    提高全面思想认识 毋庸置疑,数据是企业的宝贵资产,各企业已经意识到数据质量的重要性,但是并没有将数据治理提到战略高度,信息化建设的重点……查看详情

    发布时间:2020.10.21来源:知乎浏览量:127次

  • 数据质量问题分析

    数据质量问题分析

    数据质量问题主要包含四个问题域:技术问题、信息问题、流程问题、管理问题。1、技术问题由于具体数据处理的各技术环节异常所造成的数据质量问题……查看详情

    发布时间:2019.01.07来源:亿信华辰浏览量:167次

  • 安全数据交换方案已成为信息化建设的重要发展方向

    安全数据交换方案已成为信息化建设的重要发展方向

    为保护重要数据和应用系统的安全,目前各级政府部门普遍采用多个网络并行的方式。但是随着信息化建设的不断深入,不同网络之间或不同安全域之间的……查看详情

    发布时间:2020.08.21来源:知乎浏览量:116次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议