政府如何进行数据治理

发布时间:2021.08.30来源:亿信华辰浏览量:223次标签:数据治理

大数据不仅是一种技术,更是一种思维、模式和方法。数据资源已成为重要的国家战略资源,数据资源开发利用能力体现着一个国家的经济实力、科技实力和综合国力,对国家战略、发展和安全具有重要意义。我国正处于工业社会向信息社会的加速转型期,信息科技的发展为政府数据治理提供了较为成熟的环境。像政府部门和机构会涉及到各业务系统的管理以及满足公众服务的人口、法人的数据整合,在数据抽取、清洗、存储和提供服务等各个环节会遇到很多难点,构建一个体系化的数据治理平台势在必行。更重要的是政府掌握全社会重要核心的、高价值的数据,如何通过有效管理,进行共享开放与协同,释放背后价值,赋能管理、服务决策,推动治理能力的提升对于我们国家至关重要。


政府部门该如何进行数据治理


一、 需求调研


由于管理与技术差异化较强,不同政府部门建安全建设不一。需要进行需求调研,主要从管理、业务、技术,三个方面进行,管理与技术主要从现有体系下,如何体现数据安全内容,在数据生命周期下如何进行决策管理及技术支撑。


二、制定数据治理策略


针对需求调研和个性化要求,形成整体的规划设计,该设计需要从管理、技术、运维、标准等方面入手,既要有全面性、深入性,又要有一定灵活性以便后期扩展。在数据治理主席和专家的指导下,基于对业务数据的理解之上,由治理委员会维护,来把控其所有权和控制权,确定角色分工和管理范围并形成从上而下统一的数据治理认知。最后,达成政府和企业机构的业务目标,从而支撑数据管理,促进数据的应用和服务。


三、建立数据模型


数据建模是数据治理的重要工作,也是数据仓库项目能取得成功的关键。但政府大数据主要是将政务管理和服务过程中的数据进行汇聚,传统意义上的数据建模在这个领域的作用并不是特别明显。在这种情况下,对信息的分类更加重要,可以借鉴标签化手段,将表、字段、文件等打标签,通过标签让数据使用者可以便捷地检索数据。


四、数据治理实施


依据规划设计进行治理实施。数据安全治理实施可分为5个阶段。


1、数据清洗融合。数据清洗是政府大数据相关标准中经常提到的一个概念,但在实践当中,能经常用到的清洗也就是去重、去空等,更加偏业务化的清洗规则难以应用。因此,在实践当中,更加可行的是应用“一数一源”原则,将个别问题数据利用主数据的思想进行补正,服务上层的数据分析和应用。比如,基于人的身份证号,实现户籍、婚姻、社保等的打通,为政务服务提供数据支撑。在这个原则下,数据清洗融合的能力,就是从政务数据中提炼出来的数据标准的丰富程度,能在多大程度上界定出“一数一源”。


2、数据挖掘。通过机器学习算法,实现数据治理过程的智能化,也是数据治理成果的一个亮点,包括自动标签、自动清洗融合等,在这个过程中,可以沉淀出不少的算法、规则等。


3、数据可视化。主要为加强数据流动可视,实现数据访问、敏感数据访问等数据流向可视,其主要目的为项目快速呈现价值,便于后期项目容易推进。


4、数据可管控。通过流向可视化后,需要加强数据管控能力,通过数据可视化发现问题后,需要通过及时、直接的管控手段实现快速介入,所以第二阶段重点为数据管控能力的提升。


5、数据安全体系化。该阶段需要根据前期实施过程中所遇见的问题,不断完善标准体系,实现技术、运维、标准的融合,达到安全治理体系化效果,实现“表里如一”。


总结


政府想要构建符合自身业务情况的数据治理体系,那么一个成熟的数据治理平台是必不可少的。睿治智能数据治理平台由亿信华辰自主研发,是一款融合数据治理十大产品模块,覆盖数据全生命周期管理的应用平台,也是目前国内功能齐全的数据治理工具,助力数据标准落地,提升数据质量,实现数据资产融合,快速满足政府各类不同的数据治理场景。

数据治理框架图.jpg

 


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理没有权威定义

    数据治理没有权威定义

    数据治理没有权威定义,但在实践中,它要么是管理数据资产以确保可信度和责任的首要过程,要么是所述流程的最高级别,即制定决策和制定策略的流程……查看详情

    发布时间:2018.12.04来源:Daniel Howard,Philip Howard浏览量:112次

  • 大数据环境下我国政府数据开放及应用研究

    大数据环境下我国政府数据开放及应用研究

    在当前政府各项工作开展过程中, 政府数据管理属于十分重要的一项任务及内容, 对于政府各项政务工作的开展均具有十分重要的作用及意义。……查看详情

    发布时间:2019.02.19来源:亿信华辰浏览量:84次

  • 大数据治理需要具备哪些能力和关键技术?

    大数据治理需要具备哪些能力和关键技术?

    在企业数据建设过程中,大数据治理受到越来越多的重视。从企业数据资产管理和提升数据质量,到自服务和智能化的数据应用,大数据治理的内容在不断……查看详情

    发布时间:2019.11.22来源:CSDN浏览量:186次

  • 可量身定制的数据治理平台

    可量身定制的数据治理平台

    在大数据浪潮下,大数据平台建设如火如荼,大数据平台建设本质上是数据的建设。由于数据量逐渐庞大导致的一系列问题,使很多用户意识到数据治理的……查看详情

    发布时间:2019.11.22来源:CSDN浏览量:159次

  • 超越法规遵从:从数据治理创造业务价值

    超越法规遵从:从数据治理创造业务价值

    基于模型的,基于标准的数据治理语义方法正迅速成为整个金融领域的行业规范。这方面的一些最普遍和开拓性的努力是由企业数据管理委员会(EDMC……查看详情

    发布时间:2019.02.28来源:亿信华辰浏览量:146次

  • 理解和证明数据治理2.0

    理解和证明数据治理2.0

    过去,证明数据治理的合理性是非常困难的。数据治理1.0的孤岛性质以及缺乏对增值的关注意味着买入率很低。……查看详情

    发布时间:2019.01.25来源:亿信华辰浏览量:156次

  • 企业怎样保护业务数据的质量

    企业怎样保护业务数据的质量

    企业内容的质量主要从以下三个方面体现:技术人员设计系统时逻辑严谨,符合规范;业务人员通过统一的培训,录入数据时有统一的规范;管理人员发现……查看详情

    发布时间:2019.09.10来源:知乎浏览量:126次

  • 医疗领域的数据治理

    医疗领域的数据治理

    数据治理将为患者和护理人员实现价值。医疗保健系统和提供者越来越关注使用证据来为临床和运营决策提供信息的需求。这导致他们组装并批判性地评估……查看详情

    发布时间:2018.11.20来源:Lydia Lee浏览量:130次

  • 为什么数据分析计划仍然失败

    为什么数据分析计划仍然失败

    强大的数据分析是数字业务的必要条件 - 这一切都始于智能数据治理实践,并强调质量和环境。……查看详情

    发布时间:2019.01.02来源:亿信华辰浏览量:111次

  • 数据治理和数据发现:实现数据监管实施

    数据治理和数据发现:实现数据监管实施

    企业不断努力利用数据驱动的洞察力或竞争情报,发展组织“数据文化”的概念将获得突出地位。数据和数据分析将继续在未来的全球业务中发挥关键作用……查看详情

    发布时间:2019.09.20来源:知乎浏览量:121次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议