主数据管理从哪着手?如何进行?

发布时间:2021.05.07来源:亿信数据治理知识库浏览量:216次标签:数据治理

一、主数据管理的范围

主数据管理.jpg

绝大部分企业都差不多,如客户、供应商、组织架构、人员、物料、库位、财务科目等。个别客户有一些特别的主数据,如我的一个客户是做工程项目,其主数据还有项目资料的分类、合同分类、工程跟踪的节点等等,这些都是工程项目管理中的核心数据。零售企业中的标签也是主数据,标签分静态标签和动态标签,客户性别、电话、城市、职业、健康状况等属于静态标签,期间内消费额、期间内消费次数、期间内某产品的购买次数、期间内联系次数、期间阅读(软文)次数、期间内阅读时长等都属于动态标签。智能制造企业中,工艺路线、工序、车间、班组、设备等都是主数据。此外、绩效KPI、假期、班次、人员级别、学历、岗位、工龄等等也属于主数据。


二、主数据管理的源头


只能是一个源头,但很多企业不是这样,最常见的就是人员组织架构存在于多个系统中,而且相互独立,ERP中有、HR系统中有、CRM中有、OA系统中也有,领导想知道公司目前员工总人数,每个系统拉出来的数据往往不同。一个源头就是数据录入其中某一系统,然后自动同步到其他相关系统,以哪一个系统为准呢?还是以人员组织架构为例,源头通常不是HR系统,而是OA系统,因为人员的入职、离职、升迁、调动都是从OA流程开始,OA中的数据最新,然后自动刷新ERP、HR、CRM等其他相关系统。物料主数据在很多企业也容易多源头,一般来说ERP是物料的源头,如果有PDM/PLM系统,则以PDM/PLM为源头,然后自动同步到MES、CRM等相关系统。


三、主数据管理的处理


分为两个方面:


一方面是技术,对规模较大的企业,数据中台、MDM系统都可以,对中小企业,方法也很多,无代码开发平台、RPA都可以。当然用原生开发也可以,就是效率低一些。


另一方面是逻辑,确定源头后,如何同步到相关系统,即同步采取什么样的逻辑,实时的、一天一次还是一天多次?通过系统接口、中间表还是直接读写数据库?这个比较复杂,需要根据实际情况(需求、性能、安全)而选择合适的处理逻辑。不管采用哪一种逻辑,都要同步建立自动校验机制,一旦出问题,系统自动报警,提醒相关责任人及时处理。


四、主数据管理的规范


也分为两个方面:


编码规范,所有主数据必须使用同一编码规则,如果编码不同,系统永远无法打通对接。如果有国标,尽量采用国标,未来也便于对接供应链体系中上下游的供应商和客户系统,前提是他们也使用国标。


操作规范,针对核心的主数据,必须有对应的规范流程,而且责任部门也必须唯一,比如物料主数据,要有新品发布流程、物料变更流程、产品下架流程等。比如人员主数据,要有招聘流程、新员工入职流程、员工变动流程、员工离职流程等。客户主数据和供应商主数据都有相应的流程。只有这样才能确保主数据的规范统一。很多公司系统刚刚上线时主数据做的很好,但一两年后主数据就乱了,关键就是缺乏操作规范。


此外,数据管理还要确保数据录入/采集的及时和准确,否则就会造成账实不符,只要企业从上到下,都以系统数据为准,不再接受手工报表,尤其要包括绩效考核的KPI,数据的及时性和准确性自然就会得到保证。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 管理、选择性投资推动了Hmshost的多渠道数字化之旅

    管理、选择性投资推动了Hmshost的多渠道数字化之旅

    hmshost利用跨渠道数据优化饥饿旅客的用餐体验。……查看详情

    发布时间:2019.01.15来源:亿信华辰浏览量:117次

  • 大数据平台下的企业的数据治理

    大数据平台下的企业的数据治理

    数据治理是指从使用零散数据变为使用统一主数据、从具有很少或没有组织和流程治理到企业范围内的综合数据治理、从尝试处理主数据混乱状况到主数据……查看详情

    发布时间:2018.11.28来源:数据治理浏览量:116次

  • 为什么数据成为新的生产要素,怎么理解

    为什么数据成为新的生产要素,怎么理解

    在经济学中,生产要素又称为生产输入,是人们用来生产商品和劳务所必备的基本资源,主要包括土地、劳动、资本、企业家才能和数据。生产要素促进生……查看详情

    发布时间:2020.11.25来源:知乎浏览量:279次

  • 银行数据治理包括哪几个方面

    银行数据治理包括哪几个方面

    从《银行业金融机构数据治理指引》相应章节可看出, 数据治理/管理的核心是基础数据、衍生数据,以及产生与 应用这些数据的组织架构、运行机制……查看详情

    发布时间:2021.04.06来源:数据治理研究院浏览量:140次

  • 理论之企业数据挖掘成功之道

    理论之企业数据挖掘成功之道

    面对现在海量的、不完整的、模棱两可的数据,运用数据挖掘算法对数据进行查找,找出人们所不知道的、有实用价值的信息,这一过程就是数据挖据。随……查看详情

    发布时间:2019.05.23来源:知乎浏览量:105次

  • 指数技术时代的数据治理

    指数技术时代的数据治理

    新兴的数据需求和数据生成技术需要两种类型的数据治理:安全性,以及整体企业级治理的需求,而不是逐个孤岛的治理。企业中出现了一个重要的新价值……查看详情

    发布时间:2019.01.02来源:亿信华辰浏览量:136次

  • 构建金融大数据标准体系的意义和目标

    构建金融大数据标准体系的意义和目标

    随着政府职能的逐步简政放权,标准作为辅助行业管理、规范行业发展、形成规模化效应的重要手段,将在社会治理体系中发挥更重要的作用。为顺应形势……查看详情

    发布时间:2019.12.27来源:CSDN浏览量:120次

  • 2021 年 10 大数据治理工具

    2021 年 10 大数据治理工具

    数据治理工具被定义为帮助创建和维护一组结构化策略、程序和协议的过程的工具,这些策略、程序和协议控制企业数据的存储、使用和管理方式。本文将……查看详情

    发布时间:2021.07.22来源:亿信华辰数据治理知识库浏览量:798次

  • 数据质量和数据治理之间有什么区别?

    数据质量和数据治理之间有什么区别?

    跟上无穷无尽的技术术语可能是一项艰巨的任务。松散定义的术语和行业特定的白话使水更加泥泞。特别是在数据管理方面,似乎许多单词也可以互换使用……查看详情

    发布时间:2019.07.04来源:知乎浏览量:106次

  • 数据中台和传统的数据系统出发点不一样

    数据中台和传统的数据系统出发点不一样

    原来的数据平台也好,数据湖也好,数据仓库也好,它们的出发点很多时候有局限性,应该说更是一个支撑性的技术系统,即一定要去考虑我先有什么数据……查看详情

    发布时间:2021.01.23来源:知乎浏览量:107次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议