数据资产管理直面企业痛点

发布时间:2020.09.11来源:知乎浏览量:124次标签:数据治理

企业日常经营活动中积累的大量数据,除了支持业务流程运转之外,越来越多地被用于帮助企业提升管理决策效率、实现价值挖掘和业务创新。企业日常经营决策过程的背后,实质是数据的生产、传递和利用的过程,风险控制、产品定价、绩效考核等管理决策过程需要大量高质量数据支撑。提升数据质量、降低成本已经成为行业企业热点关注话题。如果不能对数据进行有效梳理及精细化管理,其价值就得不到很好体现,严重影响数据价值发挥,甚至会给运营管理带来负面作用。此外,日益全面、严格的监管措施和信息披露要求,也对企业数据提出了前所未有的挑战。这些痛点反映了数据资产管理的重要性,主要体现在以下几个方面:

痛点之一是缺乏统一数据标准。数据登记盘点流程缺乏统一的数据标准,无法有效避免数据混乱冲突、一数多源、多样多类等问题。统一标准是解决数据的关联能力,保障信息交互、数据流通、系统访问功能顺畅的必要前提。

痛点之二是数据周期规划混乱。对于部分企业来说,其内部数据的采集、传输、存储、应用、开放共享等全生命周期流程的各个环节的规划存在不合理现象。如收集数据时数据源用户处于不知情/非同意状态、违约超范围加工或未做到加工信息隔离、未经内部同意对外提供数据等。

痛点之三是难以统筹业务管理。数据的增删、修改、使用等权限管理混乱,难以建立全面、准确、完整地反映企业运营状况的单一数据视图。数据需求、数据质量、数据应用等问题的管理和解决分散在不同业务和技术部门,没有一个清晰的协调机制和统一的数据管理渠道,业务不能及时、按需获得数据支持。

痛点之四是数据处理效率低下。数据采集、预处理等工作的周期较长,方法不够便捷,处理效率低下,无法快速挖掘整理出完善优质的数据属性供分析应用,需要提升开发及治理效率。

痛点之五是数据质量参差不齐。数据冗余、数据缺值、数据冲突等数据质量问题不能被及时发现和有效解决。需要建立规范的数据治理流程和考核机制等途径加以完善。

痛点之六是数据垃圾亟待解决。大量的历史留存冷数据无法被有效识别及处理,形成数据“包袱”。这些数据“包袱”很难变成数据“金矿”,又占用存储空间,浪费成本,造成损失。痛点之六是数据垃圾亟待解决。大量的历史留存冷数据无法被有效识别及处理,形成数据“包袱”。这些数据“包袱”很难变成数据“金矿”,又占用存储空间,浪费成本,造成损失。

痛点之七是安全监管势在必行。缺乏有效的数据安全管理机制,对敏感信息、隐私信息、保密信息的访问缺乏有效控制使其脱敏脱密合规,甚至对企业形成潜在的声誉和法律风险等。建立一个可靠的“数据加密保险箱”势在必行。

痛点之八是数据价值难以评估。数据评价体系以及数据资产化目前处于初级阶段,数据增值保值以及数据估值衡量问题亟待解决,可以说数据资产变现任重而道远。

数据作为越来越重要的生产要素,将成为比土地、石油、煤矿、劳动力等更为核心的生产材料,但是,实现数据资源向数据资本的转变还需要面对一系列的问题和挑战,数据资产管理正在成为企业赋能商业创新的具有影响力和战斗力的核心竞争领域。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 主数据管理平台有哪些?

    主数据管理平台有哪些?

    主数据管理平台正是基于平台型建设思路设计的多主题域管理平台,以统一的数据平台为支撑,通过数据模型的扩展,实现对企业的顶层业务模型的支持,……查看详情

    发布时间:2022.05.09来源:小亿浏览量:259次

  • 企业数据治理项目如何落地?

    企业数据治理项目如何落地?

    数据治理在系统层面包括数据标准、元数据、数据质量、生命周期管理、数据安全、数据资产共六大核心模块;在管理层面需要通过数据治理组织、数据治……查看详情

    发布时间:2020.06.29来源:知乎浏览量:132次

  • 大数据治理——元数据是关键

    大数据治理——元数据是关键

    在大数据时代,当数据以多种格式分散在整个企业中并来自许多来源时,需要一种新的数据治理方法。……查看详情

    发布时间:2018.12.03来源:数据管理浏览量:109次

  • 数据交换服务组件介绍

    数据交换服务组件介绍

    数据交换服务组件,在遵循一定的交换策略条件下进行数据交换及消息传递,支持数据资源在不同单位、不同区域的快速交换和共享,提供配置工具生成交……查看详情

    发布时间:2020.08.12来源:知乎浏览量:192次

  • 一文说明数据质量与数据治理的关系

    一文说明数据质量与数据治理的关系

    数据作为一种资产,对于一个公司来说,数据的核心价值可以理解为核心商业价值,我个人认为是体现在两方面,一是能为企业带来更多的盈利,二是能为……查看详情

    发布时间:2020.07.09来源:浏览量:143次

  • 我国数据资产管理的现状

    我国数据资产管理的现状

    我国数据资产管理市场发展的主要推动来自政府和大型互联网公司。在国家层面上,正在以政务信息和政府数据管理为切入口,由上至下地推动数据资产管……查看详情

    发布时间:2020.09.11来源:知乎浏览量:217次

  • 企业数字化转型面临的挑战

    企业数字化转型面临的挑战

    来自调研机构Gartner的预测也显示,到2020年,多数企业将有75%的业务实现数字化或正在数字化。数字化转型已经成为企业发展的必经之……查看详情

    发布时间:2020.04.03来源:知乎浏览量:114次

  • 数据治理的四个阶段

    数据治理的四个阶段

    数据治理的定义是对数据资产管理行使权力和控制的活动集合。其最终目的是挖掘数据价值,推动业务发展,实现盈利。……查看详情

    发布时间:2021.03.06来源:亿信数据治理知识库浏览量:168次

  • 如何保证数据质量、数据治理:让数据质量更好

    如何保证数据质量、数据治理:让数据质量更好

    数据分析、数据挖掘等各种数据应用都离不开数据质量,数据质量的重要性不用多表。今天来浅谈如何通过数据治理,来保证数据质量。数据的生命周期往……查看详情

    发布时间:2019.09.12来源:知乎浏览量:161次

  • 数据湖与数据仓库之间的桥梁

    数据湖与数据仓库之间的桥梁

    数据湖的吸引力和新颖的功能对传统的数据仓库(DWH)系统构成了巨大的威胁。DWH的主要缺点包括与不适应不断发展的数据环境的刚性内部结构相……查看详情

    发布时间:2021.07.26来源:亿信华辰数据治理知识库浏览量:147次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议