大数据和BI商业智能有何区别?有何相关?

发布时间:2019.01.08来源:亿信华辰浏览量:115次标签:数据治理

 

大数据


大数据 ≠BI商业智能,大数据也不是传统商业智能的简单升级。

1、大数据和BI两者的区别

BI(BusinessIntelligence)即商业智能,它是企业数据化管理的一整套的方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策,解决的是管理运营战略的问题。

大数据(Big Data)是指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。大数据侧重于解决某一类问题的方法,比如全网用户画像,对网络、传感器等非结构化海量数据的分析。

不管定义如何不同,大数据与传统BI是社会发展到不同阶段的产物,大数据对于传统BI,既有继承,也有发展,从"道"的角度讲,BI与大数据区别在于前者更倾向于决策,对事实描述更多是基于群体共性,帮助决策者掌握宏观统计趋势,适合经营运营指标支撑类问题,大数据则内涵更广,倾向于刻画个体,更多的在于个性化的决策。

当然纯粹从思想的角度讲,两者在概念上是可以实现统一的,都遵循数据-信息-知识-智慧这个脉络,甚至在更高的层次,两者也是可以统一的。

2、两者技术上有什么相关性?

传统BI的技术标签:ETL、数据仓库、OLAP、可视化报表。

大数据的技术标签:Hadoop、MPP、HDFS、MapReduce、流处理等。

数据治理


 

传统BI就目前来讲,其功能都可以被对应的大数据组件所替代,但大多数企业缺乏大数据业务的驱动,也缺乏相关的高技术人才。

不过新型BI被赋予了更多“大数据”潜能。正如图右侧架构所示,BI架设在大数据应用层,抽取etl后或者Hive来的数据又可作通用类的业务分析。既满足了海量实时数据分析,也满足了决策型的业务分析。

3、企业应该青睐大数据还是商业智能?

在技术领域,虽然传统BI的一些技术ETL、数据仓库、OLAP、可视化报表似乎都将处于落后边缘,因为它难以解决日后海量数据的处理问题,但是,也不能全盘否定或替代成大数据。一些企业采用SAP HANA,FineBI的直连大数据引擎都是基于这个问题优化的方案。BI的那套也将长期存在,毕竟企业对BI方案还是很青睐,大数据的普及和应用也是个漫长的过程。

大数据 VS 商业智能

大数据不是空口说说,它的第一要务就是解决业务问题,大数据一定程度上就是用全新的数据技术手段来拓展和优化业务,传统企业需要聚集一拨人来研究这个问题,需要有人专门研究和探索。如果对外,想清楚新的商业模式,如果对内,想清楚在哪个场景,可以用大数据的手段提升效率。

当前大数据可以产生价值的地方,从行业的角度看,金融、银行、互联网、医疗、科研都有广阔的前景。从领域的角度看,广告、营销、风控、供应链都是大数据发挥价值的地方,对于特定企业,比如电信运营商,大数据也可以在网络优化等方面提供新方法。

并不是每个企业都需要打造自己的大数据平台,需要考虑到企业的信息化水平和各项成本,量力而行吧,可以自行研发 ,比如BAT;也可以选型采购,比如传统大企业;中小型企业也可以租用,比如用阿里云和AWS。

就事实来讲,BI的应用是远远大于大数据应用的,有其通用的道理。大数据相对于传统BI,也不仅仅是简单的PLUS的关系,它涉及了思想、工具和人员深层次的变革,BI人员既不要一提大数据,就嗤之以鼻,认为它是新包装的马甲,其实就那么回事;也不需妄自菲薄,以为搞大数据就那么高大上,它的确是BI大多数思想的传承。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理之道是什么,要怎么做?

    数据治理之道是什么,要怎么做?

    数据治理需要体系建设:为发挥数据价值需要满足三个要素:合理的平台架构、完善的治理服务、体系化的运营手段。……查看详情

    发布时间:2021.05.14来源:亿信数据治理知识库浏览量:142次

  • 数据质量管理方法

    数据质量管理方法

    数据质量闭环管理机制以制定规则、问题发现、质量剖析、数据清理、评估验证、持续监控为核心活动,又结合银行的数据实践进行了定制和优化。……查看详情

    发布时间:2019.11.15来源:知乎浏览量:254次

  • 为什么必须链接数据治理和业务流程管理

    为什么必须链接数据治理和业务流程管理

    必须链接数据治理和业务流程管理。……查看详情

    发布时间:2019.01.22来源:亿信华辰浏览量:161次

  • 大数据时代不能没有数据治理

    大数据时代不能没有数据治理

    第一个提出大数据时代到来的是全球知名咨询公司麦肯锡,现如今大数据存在于各个行业,受到了人们的重视。现在社会科技告诉发展,信息流通快,使得……查看详情

    发布时间:2019.08.13来源:知乎浏览量:116次

  • 敏捷/精益数据治理最佳实践

    敏捷/精益数据治理最佳实践

    数据治理 的目标 是确保组织内的质量,可用性,完整性,安全性和可用性。你对此的看法取决于你。许多传统的数据治理方法似乎在实践中都很困难,……查看详情

    发布时间:2018.12.18来源:数据治理浏览量:128次

  • 数据治理与IT治理的区别

    数据治理与IT治理的区别

    最近,我们一直专注于数据治理,从数据中获取最大价值并防止下一次重大漏洞,我们中的许多人忽略了IT治理基础,这有助于我们实现卓越的数据治理……查看详情

    发布时间:2018.11.15来源:Cindy Ng浏览量:203次

  • 安全数据交换方案已成为信息化建设的重要发展方向

    安全数据交换方案已成为信息化建设的重要发展方向

    为保护重要数据和应用系统的安全,目前各级政府部门普遍采用多个网络并行的方式。但是随着信息化建设的不断深入,不同网络之间或不同安全域之间的……查看详情

    发布时间:2020.08.21来源:知乎浏览量:113次

  • 数字化时代的大数据治理应该怎么做呢?

    数字化时代的大数据治理应该怎么做呢?

    随着时代的发展,各个企业收集数据的渠道越来越多样化,也有越来越多的企业开始应用大数据来创造价值,为了合理有效的挖掘数据资源来源的价值,首……查看详情

    发布时间:2019.07.18来源:知乎浏览量:157次

  • 数据质量分析定义的六个阶段

    数据质量分析定义的六个阶段

    企业数据质量治理对象一般主要包括两类数据:一类是操作型数据,例如:主数据、参照数据和交易数据。……查看详情

    发布时间:2019.12.06来源:知乎浏览量:203次

  • 数据建模和数据映射:来自任何数据的结果

    数据建模和数据映射:来自任何数据的结果

    统一的数据建模和数据映射方法可能是许多数据驱动型组织所需要的突破。在我与客户进行的大多数对话中,他们表示需要一个可行的解决方案来模拟他……查看详情

    发布时间:2019.01.17来源:亿信华辰浏览量:214次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议