如何以及为什么要对现代商业智能治理进行众治

发布时间:2018.12.29来源:亿信华辰浏览量:1次标签:数据治理

BI和分析已经发展 - 治理也应该发展

现代商务智能使自助服务分析成为可能,组织已经实现了令人难以置信的好处,使数据民主化和众包新见解。然而,某种程度上,自助治理的想法似乎仍然是不可想象的。

在现代分析中,治理是必要的,因为数据和仪表板的共享更广泛,但应该启用数据和内容访问而不是限制它。这些实践和流程可帮助合适的人员访问正确的数据,确保推动用户决策的数据准确无误,并保持对内部政策或外部法规的遵守。

为了实现IT所需的高枕无忧和业务用户所需的敏捷性,您的治理方法必须转变为更具协作性的模型。成功意味着导航围绕此共同责任的角色,职责和流程,并通过迭代以敏捷方法改进它们。

治理指导委员会和框架

虽然现代BI技术可以帮助隐藏数据架构的复杂性并使某些任务更易于业务管理,但IT和业务部门都需要购买并参与建立和维护治理。指导委员会是确保覆盖基地的好方法,将主要参与者聚集在一起,以建立清晰的愿景和框架。

该小组应定义“道路规则”,并围绕用户角色,特权和权限,培训和认证以及衡量成功的新指标设定期望和流程。考虑到不同类型的数据需要不同类型的治理,因此您的模型必须足够灵活,以适应任何类型的数据。在您的模型适应不断变化的业务需求时,请考虑支持数据和内容治理所需的角色和流程。

通过现代分析努力实现众包治理模式

现代BI环境的实施和扩展使分析师和业务用户受益,因此,这些用户应对其整体质量负责。IT在分析渠道中的角色已经从生产者发展到推动者 - 因此IT部门应该赋予企业更大的治理利益。治理的转变并不是要求IT放弃控制,而是要让企业在可信和集中的环境中更加自立。分析师和业务用户成为识别IT和业务共同协商的治理模型中的数据问题或违规行为的第一道防线。

如果业务可能导致定义分析目标和期望结果(“什么”),那么IT对于建立实现这些结果的流程(“如何”)至关重要,包括确保数据完整性和安全性作为整个组织的分析规模。请记住,这不是一夜之间的转变; 它应该是渐进的。通常,这意味着从更传统的自上而下的方法开始,随着时间的推移转向自助服务模式,通过适当的知识,培训和对治理策略的理解,将责任委派给正确的业务用户。

培训和分诊 - IT可以通过将治理作为协作来放弃一些控制,但他们也应该分担修复分析问题的责任。企业参与还应包括在适当的时间和地点解决问题。在整个组织中部署现代分析时,教育和培训对于降低治理风险和变革管理阻力至关重要,并有助于企业投资参与治理。然后,如果有任何进展,IT可以对某些任务进行分类,并且适当的业务用户有权成为解决方案流程的一部分。因此,IT应该建立一个基础并培训与治理相关的所有事项 - 他们确切地知道模型应该如何。相反,企业应该建立一个COE来培训分析技能,最佳实践,

新的数据源和内容 - 从IT管理数据和内容创建开始。成功的内容组织框架可以轻松地从实验内容中识别可信数据 - 例如,验证数据源与连接外部数据以进行沙箱项目中的临时分析。自助服务的下一步可能意味着IT仍然拥有数据,但是一小组用户可以管理发布新内容,将内容从沙箱移动到生产项目并进行推广。通过明确的标准和发布新内容或认证数据源的清单,您可以管理具有业务参与的可扩展模型。

管理职责 - 随着现代分析实践的增长,应将某些管理职责委派给业务用户。IT应始终管理安全性,授权,组策略等,但业务方面的项目负责人和站点管理员可以拥有添加新用户,管理权限以及监控用户和内容参与的所有权。通常,这是由部门安排的。业务方面的管理员可以利用IT与现代平台集成的Active Directory或其他身份验证,使权限管理更简单并保持合规性。

生命周期管理 - 内容参与是现代分析部署成功的标志,通常也是业务关键绩效指标。IT应该使业务部门能够监控其部门内的仪表板和报告的参与情况,识别未使用或访问的内容或字段,甚至执行影响分析以评估更改可能如何影响用户。这为企业提供了更多的所有权和对其所创建的分析内容的责任,并使IT专注于技术平台的安全性,性能和容量。

寻求与现代治理方法的和谐

如果您的组织处于“Excel地狱”,其中包含大量电子表格,导致您的数据在下游分析期间无法保护,您应该查看您的分析和治理实践。将钟摆摆到另一个极端,如果您已经从传统BI转移到现代BI,您的组织可以从仔细查看您的分析受众,谁正在使用哪些报告及其原因以及谁可能从不那么严格的数据访问中受益中受益。

如果您将治理视为一种频谱,那么找到理想的治理框架并努力实现现代自助服务模式可能会更容易。现代商业智能可以访问这一范围内的任何地方,但是由IT和业务部门协同工作,以便在互利的情况下以迭代和增量的方式继续前进。

有一个传统的,自上而下的治理的地方,并且肯定有一个限制较少,自下而上的方法的地方。但是,没有任何一个/或者它们必须汇合; 现代的方法就是找到适当的平衡,并随着时间的推移对这种平衡保持开放。您可以对角色,控制,流程和职责做出更快的响应,您可以带来更多的业务价值。你知道你在哪个方面 - 更重要的是,你在哪里?


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业应该将数据治理作为加速数字化转型的催化剂

    企业应该将数据治理作为加速数字化转型的催化剂

    随着许多业务系统和应用程序(包括采购,呼叫中心交互,网站访问,移动应用程序使用以及越来越多的物联网传感器和设备)产生的大量客户数据,应该……查看详情

    发布时间:2019.07.04来源:知乎浏览量:3次

  • 为什么数据治理对企业这么重要?

    为什么数据治理对企业这么重要?

    现在很多企业都有自己的数据治理计划,从而更便捷的管理企业,那么所谓的数据治理其实就是我们常说的数据分析,将零散的数据汇总起来,进行统一的……查看详情

    发布时间:2019.07.17来源:知乎浏览量:2次

  • 数据问题的全面解决之道——数据治理

    数据问题的全面解决之道——数据治理

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。……查看详情

    发布时间:2019.01.18来源:亿信华辰浏览量:2次

  • 数字化转型的缺失部分:公民开发者

    数字化转型的缺失部分:公民开发者

    随着第四次工业革命席卷全球,新技术渗透到从高层城市到小村庄的各个方面。消费者的需求和期望随着技术的发展而增加,迫使企业以更快的速度提供优……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:2次

  • 敏捷/精益数据治理最佳实践

    敏捷/精益数据治理最佳实践

    数据治理 的目标 是确保组织内的质量,可用性,完整性,安全性和可用性。你对此的看法取决于你。许多传统的数据治理方法似乎在实践中都很困难,……查看详情

    发布时间:2018.12.18来源:数据治理浏览量:2次

  • 银行业数据治理实践难点及应对-数据治理实践

    银行业数据治理实践难点及应对-数据治理实践

    数据治理已成为在全球各国领导层面进行讨论的中心议题,其背景和目的,主要是旨在推动建立新的国际数据监管体系。在我国的金融行业中,随着互联网……查看详情

    发布时间:2019.12.20来源:知乎浏览量:3次

  • 银行数据治理工作的落地面临着众多的困难与挑战

    银行数据治理工作的落地面临着众多的困难与挑战

    数据治理越来越受到银行、监管机构乃至国家层面的重视。银行已经意识到高效的管理体系、统一的数据标准、良好的数据质量才是数据价值实现的基础。……查看详情

    发布时间:2020.07.09来源:小亿浏览量:5次

  • 理论之企业数据挖掘成功之道

    理论之企业数据挖掘成功之道

    面对现在海量的、不完整的、模棱两可的数据,运用数据挖掘算法对数据进行查找,找出人们所不知道的、有实用价值的信息,这一过程就是数据挖据。随……查看详情

    发布时间:2019.05.23来源:知乎浏览量:4次

  • 数据治理的全球难题:法治化治理如何跟上技术更新步伐?

    数据治理的全球难题:法治化治理如何跟上技术更新步伐?

    随着技术的发展,需要治理的已不只是数据,人工智能算法等领域也成为治理课题。数据、互联网平台、人工智能算法应该如何治理?这在全球范围内都是……查看详情

    发布时间:2019.10.25来源:知乎浏览量:3次

  • 企业数据治理到底怎么做?

    企业数据治理到底怎么做?

    数据治理对于确保数据的准确、适度分享和保护是至关重要的。有效的数据治理计划会通过改进决策、缩减成本、降低风险和提高安全合规等方式,将价值……查看详情

    发布时间:2019.08.30来源:知乎浏览量:0次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议