从主数据到数据资产,数据资产管理到底应该怎么做?

发布时间:2020.08.19来源:CDDN浏览量:28次标签:数据治理

主数据和数据资产管理的定义我们已经说烂了,今天就从主数据出发,来说说怎么进行数据资产管理。

数据资产管理,主数据

主数据的问题80%是管理问题
很多企业的信息部门都很困惑,主数据管理工作就是典型的钱少、活多、看不见效果、领导不重视、还经常挨领导骂,干的很苦逼。岂不知,主数据的问题80%都是管理问题。高层领导不关注、没有专业的主数据管理团队、没有规范的主数据管理制度和流程,数据标准和技术标准缺失、数据管理重视程度不足,数据维护随意无检查机制、没有定期的数据质量检验和清洗 ……,这都是造成主数据质量不高的重要因素。主数据是超越业务、超越部门的数据,要想将主数据做好,需要各层级领导足够重视、全员参与,同时,构筑起主数据管理的基础能力,包括:组织、流程、 标准和工具。在主数据管理基础能力中,组织、流程、 标准的建设80%决定了主数据项目的成败和建设效果的品质。

“获取数据从哪里来,到哪里去”是当前企业数据中心的主要挑战。随着数据复制(Replication)、数据仓库以及其他数据集成技术的广泛采用,企业数据集成度及依赖关系变得非常复杂,任何一个数据元素的修改都可能引起整个系统的巨大改变。数据资产就是企业数据中心建立全生命周期中所涉及的分析、设计及实现的所有信息与文档。拥有该过程中的所有数据流信息以及数据资产的文档及报表能力,可以大大帮助用户提高变化影响度的分析与预测水平。

数据资产管理对数据建模工具的新需求 
    对于数据资产管理最重要的就是能够清楚地定义数据元素,包括数据格式,别名,统计表以及其他特性标识符等;描述数据元素定义的信息来源,及其相关数据元素的信息(如两者之间的转换规则);记录使用信息,包括数据元素的产生及修改信息(人员及日期等),安全及访问控制信息,及访问历史记录。用户能够跟踪到数据资产在整个分析、设计及开发流程中的所有状态,包括中间过渡状态。为了达到这个目标,对原有的数据建模工具提出新的需求: 
1) 数据元素的分析、设计应与企业的业务需求及业务过程定义相结合。 
2) 数据元素的定义必须支持版本管理,来记录其历史变化过程。 
3) 定义数据流,即不同阶段(如分析与设计)之间或同一阶段中不同数据之间的数据转换关系能力。 

主数据项目的实施能够帮助企业初步建立起主数据的管理体系,包括:管理组织、制度和流程、数据标准、技术规范以及初始的主数据代码库等。但最好持续的运营工作,是发挥主数据价值的关键。有些项目实施过程很成功,但系统运行一段时间,比如半年、一年后,突然发现,主数据的质量已经回到了“解放前”。出现这种情况的主要原因是主数据管理相关制度和标准没有贯彻到位,没有定期进行数据质量检查和清洗。所以,实施主数据项目,只是数据治理的一个开始,企业要保持高质量的数据,必须持续的运营和不断的优化。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理能力正在成为互联网+时代城市竞争新优势

    数据治理能力正在成为互联网+时代城市竞争新优势

    新型智慧城市的四个新视角解读 城市服务要以人为中心,但是城市的服务不但以人为中心,还是要做到数据,由于数据为核心,没有好的数据,就没有……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:34次

  • 使用数据治理克服常见的业务障碍

    使用数据治理克服常见的业务障碍

    在快速发展的技术,大数据和高级分析的时代,数据治理在每个组织中都发挥着至关重要的作用,无论规模大小或行业如何。从定义元数据管理指南,到解……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:25次

  • 面对如今的数据挑战企业如何有效地进行数据治理

    面对如今的数据挑战企业如何有效地进行数据治理

    数据治理是对数据资产管理行使权力和控制的活动集合,数据治理是识别、管理和解决几种不同类型数据相关问题的手段,包括数据质量问题、数据命名和……查看详情

    发布时间:2019.08.29来源:知乎浏览量:29次

  • 数据治理面临的挑战

    数据治理面临的挑战

    本部分的内容将数据治理面临的挑战分为两类,一类因“技术”而起,一类因“人”而起。由客观的技术问题对数据治理带来的挑战普遍较好解决,比如如……查看详情

    发布时间:2019.11.01来源:知乎浏览量:37次

  • 数据问题的全面解决之道——数据治理

    数据问题的全面解决之道——数据治理

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。……查看详情

    发布时间:2019.01.18来源:亿信华辰浏览量:37次

  • 如何做好大数据的质量管理?

    如何做好大数据的质量管理?

    如今关于大数据的话题非常火热,关于但数据的质量问题也备受人们关注,有很多IT人士开始认为,在大数据的时代,只有对数据进行有效的管理,那么……查看详情

    发布时间:2019.07.26来源:知乎浏览量:56次

  • 重新思考数据治理

    重新思考数据治理

    随着数据和分析技术的变化,它们带来了新的数据治理挑战。当然,数据治理有各种定义,具体取决于您询问的对象。出于本文的目的,我们将其定义为确……查看详情

    发布时间:2018.11.26来源:数据治理浏览量:35次

  • 数据治理标准:数据质量六大评价标准

    数据治理标准:数据质量六大评价标准

    万事万物都有其标准,铁轨有规定的标准宽度,一千克有规定的标准重量。那么在大数据时代,企业中各种各样的数据是否也有统一的数据标准呢?数据标……查看详情

    发布时间:2022.01.20来源:小亿浏览量:574次

  • 良好数据治理的6步路线图

    良好数据治理的6步路线图

    今年早些时候,我们发现许多数据科学家将大部分时间花在“数据管理员”上 - 即分类和清理数据,而不是将其分析为可操作的见解。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:51次

  • 影响企业大数据分析的三大误区

    影响企业大数据分析的三大误区

    我们现在身处一个虚拟时空交易与现实时空交付的数字化时代。数字化正在各行业快速发展,许多企业将会经历前所未有的改变。数据正发挥着越来越重要……查看详情

    发布时间:2022.03.08来源:小亿浏览量:50次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议