企业大数据体系构建,从这4层逐步递进递进

发布时间:2019.05.20来源:数据分析网浏览量:135次标签:数据治理

关于企业的大数据体系构建,可以分为4个层级,每个层级之间可以是递进的关系,虽然业务主导不同,但构建思路相通。

数据分析平台,数据治理,亿信华辰


关于企业的大数据体系构建,可以分为4个层级,每个层级之间可以是递进的关系,虽然业务主导不同,但构建思路相通。

一、数据基础平台
基础的数据平台建设工作,包含基础数据平台的建设,数据的规范,数据仓库的建立、数据质量,统一业务口径等等。

很多公司的数据无法有效利用,一来是数据散落在各个部门产品的服务器,各个业务系统的数据没有打通;二来是缺乏统一的数据规范,业务系统数据按照各自的口径和理解习惯上报,没有标准化的SDK和上报协议,难以构建高质量的数据仓库。

大数据平台架构的搭建并不是什么高大上的技术活,整个平台价值的体现,其实需要公司各个部门的配合,是一个相互依存的关系。例如关键数据指标体系的建立,需要从各个部门业务指标进行提炼,并得到业务部门认可。常见的关键指标,比如营销业务新增用户,有效新增用户,活跃转化率,累计留存数,渠道效果等。比如销售部门,日销售额、月销售额、回款占比等等。

二、数据报表分析与可视化
在第一层级中,进行数据指标体系规范,统一定义,统一维度区分,就可以很方便的进行标准化可配置数据报表设计,直观的可视化输出设计,包括财务、销售、供应链等多种数据类别。常见的数据报表工具有帆软FineReport、birt、水晶报表,小规模也可以用Excel来替代,但需要一定的开发量和使用水平。企业的报表通常可分为基础查询类报表、管理层分析报表和主题分析报表。

三、精细化业务分析
某些业务是需要精细化管理的,比如互联网电商的运营,为此还提出了“增长黑客”一概念。在建立数据平台和可视化基础上,对已有的销售用户行为、收入数据等进行各种分析,输出日报、周报、月报、各种专题分析报告。以互联网为例,常见的数据分析工作如下:

1. 通过 A/B 测试进行产品分析优化;
2. 运用漏斗模型进行用户触达分析,如广告从曝光到活跃的转化;
3. 营销推广活动的实时反馈;
4. 业务长期健康度分析,例如从用户流动模型、产品生命周期分析产品成长性和健康度;


四、战略分析与决策
战略分析与决策更多的是基于企业经营层面的分析和重大决策改变的分析,这些决策往往需要大量数据和指标的支持,而在过去是依靠报表和经验。

企业如果要将大数据体系贯彻落实,建议是用机器来做好业务运营监控,在此基础上让人来做人类更擅长的经验分析和战略判断。




(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 强大的数据治理是机器学习成功的关键

    强大的数据治理是机器学习成功的关键

    人工智能和机器学习这两个术语通常被视为同一枚硬币的两面。尽管如此,虽然ML算法增强了AI功能,并使它们能够进行更多的尖端和智能计算,但还……查看详情

    发布时间:2019.01.17来源:数据治理浏览量:122次

  • 通俗讲透什么是数据资产管理

    通俗讲透什么是数据资产管理

    作为一个初入数据治理这行的小白,刚听到数据资产管理的时候也是一脸懵,资产编目?数据生命周期?归档?概念有时候实在有些抽象,再加上数据本来……查看详情

    发布时间:2020.08.14来源:知乎浏览量:113次

  • 幸存下来的数据治理浪潮

    幸存下来的数据治理浪潮

    我们正在从大数据的狂野西部时期出现,当时的问题主要集中在技术上是否可行,而不是合法或道德。文化需要一段时间才能改变,工具的发展也需要时间……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:102次

  • 2019年需要关注的三个治理趋势

    2019年需要关注的三个治理趋势

    通过精心应用RPA,优先考虑数据质量,并迎合不断变化的劳动力构成,数据专业人员可以有效地指导他们的组织进入数据驱动的未来。……查看详情

    发布时间:2018.12.20来源:亿信华辰浏览量:90次

  • 数据资产管理催动数据价值加快释放

    数据资产管理催动数据价值加快释放

    12月10日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会联合举办的“2019数据资产管理大会”在京召开。多位大数据行业专家……查看详情

    发布时间:2020.03.26来源:知乎浏览量:111次

  • 所以你认为你知道什么是数据治理?

    所以你认为你知道什么是数据治理?

    数据治理是当今一个相对较新且非常热门的话题。……查看详情

    发布时间:2018.12.25来源:亿信华辰浏览量:106次

  • 大数据是大问题?组织需要为数据管理负责

    大数据是大问题?组织需要为数据管理负责

    如果数据收集在2018年让人们明白一件事的话,那就是使用数据的公司与商业模式依赖数据利用的公司之间存在一条明显而深刻的界线。……查看详情

    发布时间:2019.04.08来源:亿信华辰浏览量:112次

  • 五方面提升银行业数据治理能力

    五方面提升银行业数据治理能力

    银行业面临着数据治理的紧迫需求,应该多措并举提升数据治理能力。……查看详情

    发布时间:2019.11.28来源:知乎浏览量:144次

  • 盘点数据治理的6个价值

    盘点数据治理的6个价值

    ​随着大数据的发展,各行各业都面临越来越庞大且复杂的数据,这些数据如果不能有效管理起来,不但不能成为企业的资产,反而可能成为拖累企业的“……查看详情

    发布时间:2022.06.15来源:互联网浏览量:248次

  • 谈大数据时代下的数据治理

    谈大数据时代下的数据治理

    2013年被众多的IT人定义为中国的大数据元年,这一年国内的大数据项目开始在交通、电信、金融部门被广泛推动。各大银行对Hadoop的规划……查看详情

    发布时间:2019.01.03来源:亿信华辰浏览量:96次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议