企业大数据体系构建,从这4层逐步递进递进

发布时间:2019.05.20来源:数据分析网浏览量:202次标签:数据治理

关于企业的大数据体系构建,可以分为4个层级,每个层级之间可以是递进的关系,虽然业务主导不同,但构建思路相通。

数据分析平台,数据治理,亿信华辰


关于企业的大数据体系构建,可以分为4个层级,每个层级之间可以是递进的关系,虽然业务主导不同,但构建思路相通。

一、数据基础平台
基础的数据平台建设工作,包含基础数据平台的建设,数据的规范,数据仓库的建立、数据质量,统一业务口径等等。

很多公司的数据无法有效利用,一来是数据散落在各个部门产品的服务器,各个业务系统的数据没有打通;二来是缺乏统一的数据规范,业务系统数据按照各自的口径和理解习惯上报,没有标准化的SDK和上报协议,难以构建高质量的数据仓库。

大数据平台架构的搭建并不是什么高大上的技术活,整个平台价值的体现,其实需要公司各个部门的配合,是一个相互依存的关系。例如关键数据指标体系的建立,需要从各个部门业务指标进行提炼,并得到业务部门认可。常见的关键指标,比如营销业务新增用户,有效新增用户,活跃转化率,累计留存数,渠道效果等。比如销售部门,日销售额、月销售额、回款占比等等。

二、数据报表分析与可视化
在第一层级中,进行数据指标体系规范,统一定义,统一维度区分,就可以很方便的进行标准化可配置数据报表设计,直观的可视化输出设计,包括财务、销售、供应链等多种数据类别。常见的数据报表工具有帆软FineReport、birt、水晶报表,小规模也可以用Excel来替代,但需要一定的开发量和使用水平。企业的报表通常可分为基础查询类报表、管理层分析报表和主题分析报表。

三、精细化业务分析
某些业务是需要精细化管理的,比如互联网电商的运营,为此还提出了“增长黑客”一概念。在建立数据平台和可视化基础上,对已有的销售用户行为、收入数据等进行各种分析,输出日报、周报、月报、各种专题分析报告。以互联网为例,常见的数据分析工作如下:

1. 通过 A/B 测试进行产品分析优化;
2. 运用漏斗模型进行用户触达分析,如广告从曝光到活跃的转化;
3. 营销推广活动的实时反馈;
4. 业务长期健康度分析,例如从用户流动模型、产品生命周期分析产品成长性和健康度;


四、战略分析与决策
战略分析与决策更多的是基于企业经营层面的分析和重大决策改变的分析,这些决策往往需要大量数据和指标的支持,而在过去是依靠报表和经验。

企业如果要将大数据体系贯彻落实,建议是用机器来做好业务运营监控,在此基础上让人来做人类更擅长的经验分析和战略判断。




(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 探索数据生命周期管理的五个阶段

    探索数据生命周期管理的五个阶段

    企业并不总是需要所有数据 - 特别是当数据被认为过时时。但是,诉讼,审计或其他突发事件可以使其快速检索变得至关重要。考虑到这种可能性,许……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:127次

  • 两会各地人大代表对于大数据都关心什么?

    两会各地人大代表对于大数据都关心什么?

    两会的召开,各地人大代表针对各个领域、行业、产业纷纷提出了许多具有高价值的议题。针对不同地区的情况与发展势态,各地代表对于大数据的运用与……查看详情

    发布时间:2019.03.11来源:大数据浏览量:147次

  • 数据治理为什么会重新引起关注?

    数据治理为什么会重新引起关注?

    这突出了数据治理的重要性。由数据治理研究所定义为“信息相关过程的决策权和责任系统,根据商定的模型执行,描述谁可以采取什么行动与什么信息,……查看详情

    发布时间:2019.09.04来源:知乎浏览量:178次

  • 数据治理治什么?在哪治?怎么治?

    数据治理治什么?在哪治?怎么治?

    数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。其实在我看来,……查看详情

    发布时间:2020.06.24来源:知乎浏览量:121次

  • 企业为什么要实施数据治理项目

    企业为什么要实施数据治理项目

    目前业界并没有对其概念的统一标准定义,我们可以这么认为,数据治理从本质上看就是对一个机构(企业或政府部门)的数据从收集融合到分析管理和利……查看详情

    发布时间:2020.04.09来源:知乎浏览量:131次

  • Informatica把AI带到了数据治理、数据治理和数据治理的合规性。

    Informatica把AI带到了数据治理、数据治理和数据治理的合规性。

    随着欧盟制定新隐私规定的最后期限越来越近,企业需要掌握数据的来源。……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:159次

  • 强监管下,医疗卫生系统如何开展数据治理建设?

    强监管下,医疗卫生系统如何开展数据治理建设?

    随着大数据时代的到来,健康医疗大数据被广泛应用于临床决策支持、药物研发、公共卫生领域等方面。由于医疗数据分布广而无序、医学信息的极度不对……查看详情

    发布时间:2018.12.10来源:亿信华辰浏览量:134次

  • 数据治理成功的秘诀

    数据治理成功的秘诀

    数据治理(DG)1.0一直在努力实现,但现在DG需要符合通用数据保护法规(GDPR),因此企业需要一种新方法来实现数据治理的成功。……查看详情

    发布时间:2019.01.27来源:亿信华辰浏览量:200次

  • 数据治理指标跟踪

    数据治理指标跟踪

    在NYU Langone Health System,提供者的角色不仅对患者至关重要,对整个企业也至关重要。提供者是为患者提供医疗保健的……查看详情

    发布时间:2019.03.22来源:亿信华辰浏览量:163次

  • 数据治理的目标和原则

    数据治理的目标和原则

    所有成功的数据治理和管理计划,流程和项目都充实了这些原则。它们是帮助利益相关者聚集在一起解决 每个组织固有的数据相关冲突类型的原则 ……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:214次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议