企业大数据体系构建,从这4层逐步递进递进

发布时间:2019.05.20来源:数据分析网浏览量:92次标签:数据治理

关于企业的大数据体系构建,可以分为4个层级,每个层级之间可以是递进的关系,虽然业务主导不同,但构建思路相通。

数据分析平台,数据治理,亿信华辰


关于企业的大数据体系构建,可以分为4个层级,每个层级之间可以是递进的关系,虽然业务主导不同,但构建思路相通。

一、数据基础平台
基础的数据平台建设工作,包含基础数据平台的建设,数据的规范,数据仓库的建立、数据质量,统一业务口径等等。

很多公司的数据无法有效利用,一来是数据散落在各个部门产品的服务器,各个业务系统的数据没有打通;二来是缺乏统一的数据规范,业务系统数据按照各自的口径和理解习惯上报,没有标准化的SDK和上报协议,难以构建高质量的数据仓库。

大数据平台架构的搭建并不是什么高大上的技术活,整个平台价值的体现,其实需要公司各个部门的配合,是一个相互依存的关系。例如关键数据指标体系的建立,需要从各个部门业务指标进行提炼,并得到业务部门认可。常见的关键指标,比如营销业务新增用户,有效新增用户,活跃转化率,累计留存数,渠道效果等。比如销售部门,日销售额、月销售额、回款占比等等。

二、数据报表分析与可视化
在第一层级中,进行数据指标体系规范,统一定义,统一维度区分,就可以很方便的进行标准化可配置数据报表设计,直观的可视化输出设计,包括财务、销售、供应链等多种数据类别。常见的数据报表工具有帆软FineReport、birt、水晶报表,小规模也可以用Excel来替代,但需要一定的开发量和使用水平。企业的报表通常可分为基础查询类报表、管理层分析报表和主题分析报表。

三、精细化业务分析
某些业务是需要精细化管理的,比如互联网电商的运营,为此还提出了“增长黑客”一概念。在建立数据平台和可视化基础上,对已有的销售用户行为、收入数据等进行各种分析,输出日报、周报、月报、各种专题分析报告。以互联网为例,常见的数据分析工作如下:

1. 通过 A/B 测试进行产品分析优化;
2. 运用漏斗模型进行用户触达分析,如广告从曝光到活跃的转化;
3. 营销推广活动的实时反馈;
4. 业务长期健康度分析,例如从用户流动模型、产品生命周期分析产品成长性和健康度;


四、战略分析与决策
战略分析与决策更多的是基于企业经营层面的分析和重大决策改变的分析,这些决策往往需要大量数据和指标的支持,而在过去是依靠报表和经验。

企业如果要将大数据体系贯彻落实,建议是用机器来做好业务运营监控,在此基础上让人来做人类更擅长的经验分析和战略判断。




(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业架构与数据治理:探索链接

    企业架构与数据治理:探索链接

    从公司意义上讲,创新管理是通过采用创新的想法,产品,流程和业务模型,快速有效地实现组织目标。大多数组织开始意识到,为了推动业务增长并保持……查看详情

    发布时间:2019.02.19来源:亿信华辰浏览量:91次

  • 数据治理和数据发现:实现数据监管实施

    数据治理和数据发现:实现数据监管实施

    企业不断努力利用数据驱动的洞察力或竞争情报,发展组织“数据文化”的概念将获得突出地位。数据和数据分析将继续在未来的全球业务中发挥关键作用……查看详情

    发布时间:2019.09.20来源:知乎浏览量:83次

  • 数据治理要处理好四个关系

    数据治理要处理好四个关系

    随着我国大数据战略的不断推进,各类生产生活行为都以数据的形式全景留痕,构建了一个与现实空间平行的“数据空间”,数据治理呼之欲出。要切实发……查看详情

    发布时间:2020.04.09来源:知乎浏览量:62次

  • 浅谈企业数据治理的实践

    浅谈企业数据治理的实践

    在大数据时代,数据治理是所有的拥有大量数据的公司的巨大的挑战。没有数据,企业缺乏用于做决策的数据的支持。可是有了越来越多的数据,很多情况……查看详情

    发布时间:2019.09.04来源:知乎浏览量:97次

  • 用于增强数据治理和法规遵从性的容器

    用于增强数据治理和法规遵从性的容器

    在今天分散的存储基础架构中,审计人员如何评估企业数据的使用?总之,很难!……查看详情

    发布时间:2019.03.11来源:亿信华辰浏览量:87次

  • 数据科学趋势在2019年

    数据科学趋势在2019年

    在谈到2019年要关注的主要数据科学趋势时,Kaggle的联合创始人兼首席执行官Anthony Goldbloom 预测,很快数据中心将……查看详情

    发布时间:2019.01.04来源:数据治理浏览量:56次

  • 关于数据标准认识的几个误区

    关于数据标准认识的几个误区

    数据标准这个词,最早是在金融行业,特别是银行业的数据治理中开始使用的。数据标准工作一直是数据治理中的重要基础性内容。但是对于数据标准,不……查看详情

    发布时间:2020.11.13来源:知乎浏览量:68次

  • 探索科学有效的数据治理之路

    探索科学有效的数据治理之路

    数据是数字经济的基础性战略资源,数据治理能力是国家竞争力的体现。随着移动互联网、物联网、云计算等信息技术的飞速发展,人们的生产和生活方式……查看详情

    发布时间:2020.07.31来源:知乎浏览量:81次

  • 数据治理市场驱动因素和预测

    数据治理市场驱动因素和预测

    全球数据治理市场分散,主要参与者使用各种策略,如新产品发布,扩张,协议,合资企业,合作伙伴关系,收购等,以增加他们在这个市场的足迹,以便……查看详情

    发布时间:2019.07.11来源:知乎浏览量:69次

  • 四个用例证明数据治理的自动化的好处

    四个用例证明数据治理的自动化的好处

    如果没有至少某种程度的元数据驱动的自动化,组织就无法充分利用数据驱动的战略。……查看详情

    发布时间:2019.02.15来源:亿信华辰浏览量:86次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议