数据资产管理方案之如何让数据化为价值

发布时间:2020.08.14来源:知乎浏览量:183次标签:数据治理

数据是资产的概念已经成为行业共识。然而现实中,对数据资产的管理和应用往往还处于摸索阶段,数据资产管理面临诸多挑战。主要分为以下三点:

1、大部分企业和政府部门的数据基础还很薄弱,存在数据标准混乱、数据质量层次不齐、系统间数据孤岛化严重等现象,阻碍了数据的共享应用;

2、受限于数据规模参差不齐和数据源种类庞杂,多数企业的数据应用刚刚起步,主要集中在精准营销,舆情感知和风险控制等有限场景,应用深度不够,应用空间亟待开拓;

3、由于数据的价值很难评估,企业或组织难以对数据的成本及其对业务的贡献进行评估,从而难以像运营有形资产一样管理数据资产。

那如何解决数据资产管理难题,让我们数据资产管理的定义说起。


数据资产管理的定义

“数据资产”一词于1974年由Peters提及,由信息资源和数据资源的概念逐渐演变而来,并随着数据管理、数据应用和数字经济的发展而普及。中国信通院将其定义为“由企业拥有或者控制的,能够为企业带来未来经济利益的,以一定方式记录的数据资源”。在企业中,并非所有的数据都构成数据资产,可明确作为“资产”的数据资源,表现为以下两种形式:可帮助现有产品实现收益的增长;数据本身可产生价值。

而数据资产管理,就是针对上述“数据资产”进行管理,主要内容包括以下三大方面。

数据资产治理:让企业数更加准确、一致、完整、安全,降低IT成本。

数据资产应用:使企业数据的使用过程更为人性、快捷、只能,从而提升管理决策水平。

数据资产运营:支持企业数据资产的分发、开放、交易等数据嫁接的实现,从而促进数据资产的价值实现。


数据资产管理的演变

数据管理的概念是伴随上世纪八十年代数据随机存储技术和数据库技术的使用,计算机系统中的数据可以方便地存储和访问而提出的。国际数据管理协会(DAMA)数据管理体系将数据管理划分为 10 个领域,分别是数据治理、数据架构管理、数据开发、数据操作管理、数据安全管理、参考数据和主数据管理、数据仓库和商务智能管理、文档和内容管理、元数据管理数据质量管理。2015 年,DAMA 在DBMOK2.0 知识领域将其扩展为11 个管理职能,分别是数据架构、数据模型与设计、数据存储与操作、数据安全、数据集成与互操作性、文件和内容、参考数据和主数据、数据仓库和商务智能(BI,Business Intelligence)、元数据、数据质量等。

两者的主要区别可以从以下3个方面看:

  1. 数据管理的视角不同 在数据资产管理的概念下,强调的是紧紧围绕着把数据作为一种资产,基于数据资产的价值、成本、收益开展全生命周期的管理。
  2. 管理职能有所调整 和 2015 年 DAMA的管理职能相比,数据资产管理延用数据模型、元数据、数据质量、参考数据和主数据、数据安全等内容,整合数据架构、数据存储与操作等内容,将数据标准管理、数据生命周期管理纳入管理职能,还针对当下应用场景、平台建设情况,将传统数据管理职能的具体内容进行了升级,增加了数据资产价值评估、数据资产运营流通两个管理职能。
  3. 管理要求有所升级 在“数据资源管理转向数据资产管理”的理念影响下,管理制度和组织架构也要有相应的变化,需要有更细致的管理制度和更专业的管理队伍来确保数据资产管理的流程性、严谨性和安全性。


如何实践数据资产管理

数据作为越来越重要的生产要素,将成为比土地、石油、煤矿等更为核心的生产资源,如何加工利用数据,释放数据价值,实现企业的数字化转型,是各行业和企业面临的重要课题,然而数据的价值发挥面临重重困难。企业的数据资源散落在多个业务系统中,企业主和业务人员无法及时感知到数据的分布与更新情况,也无法进一步开展对数据加工工作。数据标准不统一,数据孤岛普遍存在导致业务系统之间的数据无法共享,资源利用率降低,降低了数据的可得性。标准缺失、数据录入不规范导致数据质量差,垃圾数据增多,数据不可用。数据安全意识不够、安全防护不足导致了数据泄露事件频发,危害了企业经营和用户利益。为了解决解决数据面临的诸多问题,充分释放数据价值。


我给大家推荐一款非常好用的数据资产管理工具——睿治。睿治平台是目前国内功能最全的数据治理产品,完全覆盖了元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全9大领域。并且采用微服务架构,既可以和企业已建系统高度融合,也可以随着未来信息化发展,而无限延展。也实现了全角色的可视化,包括领导、技术管理、业务管理、都能通过平台清晰的了解数据治理的过程和结果,从而保证数据治理的落地,产生积极的推动作用。

数据资产管理方案

睿治作为一个优秀的数据治理平台,已经依托产品已为金融、法检、税务、大企业等行业的国内外用户提供量身定制的信息系统,并且凭借打造的招商租赁数据治理及数据综合服务平台。成功案例将企业数据的价值最大化。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 如何有效的进行数据交换管理

    如何有效的进行数据交换管理

    在现代信息社会,政府、企事业单位相继建立了各自的信息管理系统,这些独立的系统创建之初没有统一的规划,彼此之间数据的存储环境和存储形式差异……查看详情

    发布时间:2020.04.23来源:知乎浏览量:138次

  • 企业如何有效进行数据治理

    企业如何有效进行数据治理

    如果你处理或使用过大量数据,一定有听到过“数据治理”这个词。你会思考数据治理是什么?……查看详情

    发布时间:2019.01.18来源:亿信华辰浏览量:122次

  • 国内数据治理系统全面介绍

    国内数据治理系统全面介绍

    随着大数据技术的飞速发展,大数据已经融入到了各行各业,为了能让各企业的数据资产得到充分的利用,数据治理非常重要,如今数据治理已经逐渐成为……查看详情

    发布时间:2019.09.19来源:知乎浏览量:170次

  • 为什么数据治理是数据管理的关键

    为什么数据治理是数据管理的关键

    如果要将数据用于战略业务决策,运营效率,增加盈利能力和增强增长,那么正确管理数据至关重要。管理不善的数据导致数据不信任,数据利用率很快就……查看详情

    发布时间:2019.06.18来源:知乎浏览量:89次

  • 区块链和AI如何帮助掌握数据管理

    区块链和AI如何帮助掌握数据管理

    主数据很容易成为企业拥有的最重要的资产之一。随着数字化的不断发展和第四次工业革命的到来,主数据的价值和主数据管理的重要性才会增长。在我们……查看详情

    发布时间:2019.07.11来源:福布斯浏览量:111次

  • 企业如何解决数据治理中的数据质量问题

    企业如何解决数据治理中的数据质量问题

    解决数据治理中的数据质量问题需要技术手段,也需要管理手段,要决策层给予充分的支持,从而在技术与业务互动中逐步解决数据质量问题。……查看详情

    发布时间:2019.09.25来源:知乎浏览量:134次

  • 在数据智能时代企业面对庞大的数据量如何高效进行数据治理?

    在数据智能时代企业面对庞大的数据量如何高效进行数据治理?

    在数据智能时代,对企业而言,“数据驱动业务”或者“数据即是业务”的理念逐渐成为业界的一种共识。然而,数据孤岛、数据标准不统一等问题在一定……查看详情

    发布时间:2020.06.23来源:知乎浏览量:88次

  • 如何全面解决数据问题?看这里就全知道!

    如何全面解决数据问题?看这里就全知道!

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。数据的格……查看详情

    发布时间:2019.09.04来源:知乎浏览量:149次

  • 企业何时考虑启动数据治理项目

    企业何时考虑启动数据治理项目

    数据治理应用方面原因有什么,企业信息化建设到了一定程度,开始对数据进行相关的展示、分析、应用等,进一步提高数据对企业统计分析和决策支持的……查看详情

    发布时间:2020.04.08来源:知乎浏览量:87次

  • 医疗领域的数据治理

    医疗领域的数据治理

    数据治理将为患者和护理人员实现价值。医疗保健系统和提供者越来越关注使用证据来为临床和运营决策提供信息的需求。这导致他们组装并批判性地评估……查看详情

    发布时间:2018.11.20来源:Lydia Lee浏览量:134次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议