数据资产管理方案之如何让数据化为价值

发布时间:2020.08.14来源:知乎浏览量:204次标签:数据治理

数据是资产的概念已经成为行业共识。然而现实中,对数据资产的管理和应用往往还处于摸索阶段,数据资产管理面临诸多挑战。主要分为以下三点:

1、大部分企业和政府部门的数据基础还很薄弱,存在数据标准混乱、数据质量层次不齐、系统间数据孤岛化严重等现象,阻碍了数据的共享应用;

2、受限于数据规模参差不齐和数据源种类庞杂,多数企业的数据应用刚刚起步,主要集中在精准营销,舆情感知和风险控制等有限场景,应用深度不够,应用空间亟待开拓;

3、由于数据的价值很难评估,企业或组织难以对数据的成本及其对业务的贡献进行评估,从而难以像运营有形资产一样管理数据资产。

那如何解决数据资产管理难题,让我们数据资产管理的定义说起。


数据资产管理的定义

“数据资产”一词于1974年由Peters提及,由信息资源和数据资源的概念逐渐演变而来,并随着数据管理、数据应用和数字经济的发展而普及。中国信通院将其定义为“由企业拥有或者控制的,能够为企业带来未来经济利益的,以一定方式记录的数据资源”。在企业中,并非所有的数据都构成数据资产,可明确作为“资产”的数据资源,表现为以下两种形式:可帮助现有产品实现收益的增长;数据本身可产生价值。

而数据资产管理,就是针对上述“数据资产”进行管理,主要内容包括以下三大方面。

数据资产治理:让企业数更加准确、一致、完整、安全,降低IT成本。

数据资产应用:使企业数据的使用过程更为人性、快捷、只能,从而提升管理决策水平。

数据资产运营:支持企业数据资产的分发、开放、交易等数据嫁接的实现,从而促进数据资产的价值实现。


数据资产管理的演变

数据管理的概念是伴随上世纪八十年代数据随机存储技术和数据库技术的使用,计算机系统中的数据可以方便地存储和访问而提出的。国际数据管理协会(DAMA)数据管理体系将数据管理划分为 10 个领域,分别是数据治理、数据架构管理、数据开发、数据操作管理、数据安全管理、参考数据和主数据管理、数据仓库和商务智能管理、文档和内容管理、元数据管理数据质量管理。2015 年,DAMA 在DBMOK2.0 知识领域将其扩展为11 个管理职能,分别是数据架构、数据模型与设计、数据存储与操作、数据安全、数据集成与互操作性、文件和内容、参考数据和主数据、数据仓库和商务智能(BI,Business Intelligence)、元数据、数据质量等。

两者的主要区别可以从以下3个方面看:

  1. 数据管理的视角不同 在数据资产管理的概念下,强调的是紧紧围绕着把数据作为一种资产,基于数据资产的价值、成本、收益开展全生命周期的管理。
  2. 管理职能有所调整 和 2015 年 DAMA的管理职能相比,数据资产管理延用数据模型、元数据、数据质量、参考数据和主数据、数据安全等内容,整合数据架构、数据存储与操作等内容,将数据标准管理、数据生命周期管理纳入管理职能,还针对当下应用场景、平台建设情况,将传统数据管理职能的具体内容进行了升级,增加了数据资产价值评估、数据资产运营流通两个管理职能。
  3. 管理要求有所升级 在“数据资源管理转向数据资产管理”的理念影响下,管理制度和组织架构也要有相应的变化,需要有更细致的管理制度和更专业的管理队伍来确保数据资产管理的流程性、严谨性和安全性。


如何实践数据资产管理

数据作为越来越重要的生产要素,将成为比土地、石油、煤矿等更为核心的生产资源,如何加工利用数据,释放数据价值,实现企业的数字化转型,是各行业和企业面临的重要课题,然而数据的价值发挥面临重重困难。企业的数据资源散落在多个业务系统中,企业主和业务人员无法及时感知到数据的分布与更新情况,也无法进一步开展对数据加工工作。数据标准不统一,数据孤岛普遍存在导致业务系统之间的数据无法共享,资源利用率降低,降低了数据的可得性。标准缺失、数据录入不规范导致数据质量差,垃圾数据增多,数据不可用。数据安全意识不够、安全防护不足导致了数据泄露事件频发,危害了企业经营和用户利益。为了解决解决数据面临的诸多问题,充分释放数据价值。


我给大家推荐一款非常好用的数据资产管理工具——睿治。睿治平台是目前国内功能最全的数据治理产品,完全覆盖了元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全9大领域。并且采用微服务架构,既可以和企业已建系统高度融合,也可以随着未来信息化发展,而无限延展。也实现了全角色的可视化,包括领导、技术管理、业务管理、都能通过平台清晰的了解数据治理的过程和结果,从而保证数据治理的落地,产生积极的推动作用。

数据资产管理方案

睿治作为一个优秀的数据治理平台,已经依托产品已为金融、法检、税务、大企业等行业的国内外用户提供量身定制的信息系统,并且凭借打造的招商租赁数据治理及数据综合服务平台。成功案例将企业数据的价值最大化。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 大数据平台下的企业的数据治理

    大数据平台下的企业的数据治理

    数据治理是指从使用零散数据变为使用统一主数据、从具有很少或没有组织和流程治理到企业范围内的综合数据治理、从尝试处理主数据混乱状况到主数据……查看详情

    发布时间:2018.11.28来源:数据治理浏览量:141次

  • 数据治理需要关注什么?

    数据治理需要关注什么?

    确保企业数据的质量,可用性,可集成性,安全性和易用性。数据是公司的资产,组织必须从中获取业务价值,最大程度地降低风险并寻求方法进一步开发……查看详情

    发布时间:2020.10.31来源:知乎浏览量:245次

  • 数据治理、共享交换、数据仓库、数据中心的关系

    数据治理、共享交换、数据仓库、数据中心的关系

    建数据中心离不开数据,以前设计数据库都是从事务性数据库考虑(做的都是业务系统,思维模式太固定了),没有从数据仓库的角度来统管分析。以下是……查看详情

    发布时间:2019.08.07来源:CSDN浏览量:215次

  • 数据治理与数据质量有何不同?

    数据治理与数据质量有何不同?

    当下是一个大数据的时代,有越来越多的企业开始应用大数据来创造价值,为了能够充分的利用数据价值,企业需要对数据进行管理,当我们听到数据管理……查看详情

    发布时间:2019.07.26来源:知乎浏览量:157次

  • 融”出生命力 “合”出新动能:贵阳推动大数据与实体经济深度融合发展

    融”出生命力 “合”出新动能:贵阳推动大数据与实体经济深度融合发展

    “它以当前中国经济罕见的两位数增长率,领跑全国城市。它以创新驱动传统产业转型升级的路径,成为后发优势地区仰望的标杆。”这是去年12月15……查看详情

    发布时间:2019.02.26来源:亿信华辰浏览量:140次

  • 用大数据助力治理现代化

    用大数据助力治理现代化

    “要运用大数据提升国家治理现代化水平”“要建立健全大数据辅助科学决策和社会治理的机制,推进政府管理和社会治理模式创新”,习近平总书记的重……查看详情

    发布时间:2019.10.17来源:知乎浏览量:118次

  • 一文说明数据质量与数据治理的关系

    一文说明数据质量与数据治理的关系

    数据作为一种资产,对于一个公司来说,数据的核心价值可以理解为核心商业价值,我个人认为是体现在两方面,一是能为企业带来更多的盈利,二是能为……查看详情

    发布时间:2020.07.09来源:浏览量:149次

  • 2025年大数据分析发展的预测

    2025年大数据分析发展的预测

    全球每天的互联网搜索、点击、分享、喜欢和刷卡都会产生大约2 5艾字节的数据。这仅仅是由于物联网推动的。IDC公司预测,到2025年数据量……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:120次

  • 企业如何提升数据质量?

    企业如何提升数据质量?

    在这个大数据时代,数据资产逐渐成了构成成企业核心竞争力的关键要素,然后,大数据的应用必须建立在高质量的数据上才有意义,因此提供数据质量是……查看详情

    发布时间:2019.07.26来源:知乎浏览量:112次

  • 数据治理的应用指南——亿信华辰

    数据治理的应用指南——亿信华辰

    数据治理(有时也称为IT治理)是存储管理的关键部分。显然,IT治理总体上与数据治理密切相关:IT是任何数据治理项目的组成部分。……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:178次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议