数据治理的十五个最佳实践

发布时间:2020.07.31来源:知乎浏览量:127次标签:数据治理

数据治理是什么?
数据治理是一套原则和实践,以保证数据在完整生命周期中的质量。

数据治理

数据治理研究所(DGI)认为,它是一套切实可行的框架,帮助任何组织的各种数据利益相关方识别并满足其信息需求。DGI认为,企业不仅需要管理数据的系统还需要一套完整的规则体系,并通过流程和程序来确保这些规则都得到遵守。对任何治理系统来说,这都是一项艰巨的任务。Profisee平台这样的工具则可以使这项工作更加容易。

数据正在成为决定企业成功的核心企业资产。数字化转型在世界各地都被提上了日程。如果能够管理你的数据,就可以利用数据资产并成功进行数字化转型。这意味着必须部署适合组织发展、未来业务目标及业务模型的数据治理框架。该框架必须控制此过程中所需的数据标准,并在组织内部以及公司运营所在的业务生态系统中委派所需的角色和职责。

数据治理最佳实践
一方面,你可以从其他从事数据治理过程中进行学习。但是,每个组织都是不同的,你需要从无意识的成熟阶段到有效的成熟阶段中,一路调整数据治理实践。

本文列举了15个通用的最佳做法:
1、从小处开始。在商业的方方面面,不要眼高手低。力争快速获胜,并随着时间的推移建立雄心。
2、设定清晰、可衡量且具体的目标。你无法控制无法测量的内容。达到目标时去庆祝,并以此来赢得下一个胜利。
3、定义所有权。没有企业所有权,数据治理框架就无法成功。
4、确定相关角色和职责。数据治理是一个团队合作,其中包含来自业务各个部门的交付成果。
5、教育利益相关者。尽可能使用业务术语,并将数据治理学科的学术部分转换为业务上下文中有意义的内容。
6、专注于运营模式。数据治理框架必须集成到企业中开展业务的方式中。
7、地图基础架构、体系结构和工具。你的数据治理框架必须是企业体系结构、IT环境和所需工具的合理组成部分。
8、制定标准化的数据定义。必须分清什么需要集中管理,哪些需要敏捷化及本地化管理,并在两者之间取得平衡。
9、识别数据域。从数据域开始,在产生的影响和付出的行动之间获得最佳比率,以提高数据治理的成熟度。
10、识别关键数据元素。聚焦最关键的数据元素。
11、定义控制度量。将这些部署在最有意义的业务流程、IT应用程序和/或报告中。
12、建立商业案例。确定与增长、节省成本、风险和合规性有关的数据治理成熟度不断提高的优势。
13、利用指标。聚焦于企业通用绩效相关的有限的数据质量KPI。
14、经常交流。数据治理实践者认为,交流是该学科最关键的部分。
15、这是一种实践,而不是项目。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 有效数据治理的几个原则

    有效数据治理的几个原则

    一个好的数据中心将利用自己现有的技术和设备,向用户提供服务,尽量减少操作和维护成本,并最大限度地提高利润。如果你经常担心数据的准确性,并……查看详情

    发布时间:2019.10.21来源:知乎浏览量:101次

  • 外部管理数据集的政府数据可靠性

    外部管理数据集的政府数据可靠性

    当我在退伍军人事务部工作时,我联系了许多人 - 联邦政府以外的人 - 他们希望在联邦政府开放数据工作时帮助清理,使用和改进公共数据集。当……查看详情

    发布时间:2019.03.08来源:亿信华辰浏览量:113次

  • 谈谈数据治理是什么?

    谈谈数据治理是什么?

    数据治理这项工作一直都是存在的,和数据库设计的三范式一样都是为了数据的管理。数据治理是一整套完整的组织、制度、技术管理行为。……查看详情

    发布时间:2021.03.06来源:人人都是产品经理浏览量:127次

  • 数据治理的全球难题:法治化治理如何跟上技术更新步伐?

    数据治理的全球难题:法治化治理如何跟上技术更新步伐?

    随着技术的发展,需要治理的已不只是数据,人工智能算法等领域也成为治理课题。数据、互联网平台、人工智能算法应该如何治理?这在全球范围内都是……查看详情

    发布时间:2019.10.25来源:知乎浏览量:93次

  • 数据治理的未来:平衡数据治理和数据管理

    数据治理的未来:平衡数据治理和数据管理

    如何通过快速访问高质量数据,灌输信心并支持数据驱动的决策,为业务合作伙伴创造竞争优势?” Citizens Bank首席数据官(CDO)……查看详情

    发布时间:2018.11.14来源:Michelle Knight浏览量:99次

  • 数据治理股票检查:使用数据治理来计算您的数据资产

    数据治理股票检查:使用数据治理来计算您的数据资产

    为了遵守法规(例如,GDPR)并确保业务绩效达到峰值,组织通常会聘请顾问来帮助评估其数据资产。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:153次

  • 数据质量问题的影响因素

    数据质量问题的影响因素

    数据质量反映的是数据的“适用性(fitness for use)”,即数据满足使用需要的合适程度。数据质量通过完整性、一致性、准确性、及……查看详情

    发布时间:2020.04.09来源:百度浏览量:285次

  • 做好数据治理才能建设大数据平台

    做好数据治理才能建设大数据平台

    大数据不是凭空而来,1981年第一个数据仓库诞生,到现在已经有了近40年的历史,而国内企业数据平台的建设大概从90年代末就开始了,从第一……查看详情

    发布时间:2018.11.28来源:数据治理浏览量:124次

  • 浅谈数据质量管理

    浅谈数据质量管理

    这篇文章主要讲数据治理中的重要内容:数据质量管理。数据治理的理论和实践不断向前发展,但数据质量管理始终是数据治理的初衷,也是最重要的目的……查看详情

    发布时间:2020.06.29来源:CSDN浏览量:147次

  •  赣州银行:数据治理+管控平台,解决数据质量“老大难”

    赣州银行:数据治理+管控平台,解决数据质量“老大难”

    未来在金融科技落地的过程中,在数字化转型的征途上,亿信华辰愿助力银行数据治理每一步都走得踏实,都能见到实效。……查看详情

    发布时间:2021.04.15来源:亿信数据治理研究院浏览量:208次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议