立即扫码
享受一对一服务

发布时间:2020.07.09来源:浏览量:123次标签:数据治理
数据是资源、数据分析是工具、数据结论是价值。工欲善其事必先利其器,同样,资源不储备好,再牛逼的工具也无从下手,下文重点讨论企业如何做数据质量管理和数据治理。
重点在于两点:第一是可被信任的,要求数据必须真实可靠,能够真实的记录企业运营情况;第二是可以满足需求,要求数据服务于业务,从最基础的业务监控到商业决策,都可以通过数据给出答案。
数据质量评估六要素:完整性、规范性、一致性、准确性、唯一性、关联性;
质量问题来源
任何质量问题改善都建立在评估的基础上,知道问题在哪里才能实施改进。数据质量问题来源按照不同的分类有不一样的问题定位,本文中关于数据质量控制与数据治理借助数据流图来说明。
数据流图也称为数据流程图date flow diagram , DFD,是一种便于用户理解和分析系统数据流程的图形工具,他摆脱了系统和具体内容,精确的在逻辑上描述系统的功能、输入、输出和数据存储等,是系统逻辑模型的重要组成部分。它从数据传递和加工的角度,以图形的方式刻画数据流从输入到输出的移动变换过程,所以它可以用来做数据质量问题定位。
标准化的系统设计,数据流图会在系统需求分析阶段完成,但是大部分的系统开发都没有进行标准化的数据流图,需求后期进行完善,具体的数据流图画法不做赘述。
数据质量评估,客户行业数据一致性不足40%,无法确定哪个步骤的行业输入更加准确,数据分析可信度不高,业务影响大;问题定位在一个属性数据多个输入,无修改纠正,多个数据并存;整改方案经过沟通确定如下,通过市场部获取的客户已市场部输入为准,后续步骤默认填充,销售自己渠道获取的客户以销售输入为准,后续步骤默认填充。方案实施改进,宣导至所有干系人;对历史数据经过数据加工进行处理,后续数据采用新逻辑,评估改进后的数据一致性,确认能否满足业务需求。
发布时间:2021.03.23来源:亿信数据治理研究院浏览量:510次
发布时间:2020.06.22来源:知乎浏览量:79次
发布时间:2020.09.11来源:知乎浏览量:144次
发布时间:2021.07.22来源:亿信华辰数据治理知识库浏览量:711次
发布时间:2019.03.26来源:亿信华辰浏览量:122次
发布时间:2019.02.26来源:亿信华辰浏览量:104次
发布时间:2019.10.18来源:知乎浏览量:112次
人工
客服
预约
演示
您好,商务咨询请联系
400咨询:4000011866
咨询热线:137-0121-6791
技术
支持
您好,技术支持请联系
QQ:400-0011-866
(工作日9:00-18:00)