银行的数据治理最佳实践

发布时间:2018.11.29来源:知乎浏览量:137次标签:数据治理

        数据治理本身分狭义和广义两个区别,狭义的治理主要是组织、制度、流程这些,data governance的一个定义就是 the management of management;广义的治理包括数据质量、数据标准这些。数据治理强调两点,一是高层支持,二是各部门广泛参与。这两点在银行必须都贯彻,越体制内就越听监管的话,所以对于数据治理也就最重视。银监会有数据质量良好标准,非现场检查加现场检查,这是银行数据治理工作最大的督导。银行内数据治理各项工作的开展都要想好这两个因素,搞定了就能事半功倍。


        说句题外话,银行有成建制成体系的数据管理工作,这在各个行业内属于最好的;用成熟度衡量的话,基本都是3.0水平。其他传统行业没有这么强大的动力,互联网电商又没有这个必要,13年银监会数据质量良好标准评估指南中的最佳实践就来源于这几家。


        此外,数据治理对人的要求蛮高,要懂业务、懂数据、懂技术,所谓上能写制度办法,下能查数分析;另外,还要懂权衡、懂策略,甚至学学兵法,因为具体工作八成都是跟人有关。要求虽高,但实际上具体工作挺无聊的,因为挫败感占的比例要远高于成就感,个中体会只有行内人能了解了。


        银行数据治理,有两件事情非常棘手,一个是有些系统陈旧,文档少,没人讲的清楚具体业务怎样纪录数据,也有一些系统中比较冷门的业务可能也存在类似情况,无从谈起数据治理了,当然这样情况是少数,对全行数据治理影响不大。另一个情况是银行内部按照业务部门组织系统,数据分属各个业务部门,其中利害关系复杂,没有大的魄力很难

在数据治理上有太大成果。
最近也在做数据治理相关一些工作,要做好数据治理,应该要解决好如下一些问题。
1、要全行统一步调,自上而下推动数据治理工作。这点很容易形式上重视,但落地执行时各种阻力
2、要全行统一规划,按照统一标准生产数据,并提交完备的数据文档
3、要按照统一标准加工数据,包括数据采集,清洗,存储等
4、要有一套完整的数据处理的平台和数据质量监控分析工具


        IT部门的数据治理工作,制度和流程层面的东西不谈。
        数据标准化。对共用数据制定标准,达成系统建设共识,降低数据转换代价。银行部门使用的系统较多,每个系统的定义千差万别,但都有一些共用的数据,如货币代码、国家代码、日期(有些8位,有些10位,有些...)等,这些数据的使用都要有明确标准和使用场景。


        数据流向可追溯,数据用途明确化。数据流向可追溯,数据用途明确化。系统之间数据传递(如文件)可追溯,如清楚数据文件来源于那里,中途经过了那些系统的过滤,最终被哪些用户使用。
数据交换平台化。建设数据交换平台,支持数据流动。即有一个数据交换平台支持系统之间的数据流动,对数据的流出方和流入方的权限和规则加以控制。


        数据市集化。共享类数据集市化,即需即取。系统和系统之间的共享数据共享与数据市集,供相关的经营分析系统使用,或者分析结果后最后回吐到市集。
数据使用工具化。建设数据ETL,对数据进行清洗,变形,装载。
数据仓库化/大数据平台。存储历史数据供经营分析使用。
数据分析平台化。提供建模分析使用工具,进行经营分析,形成分析结果,回吐给其它平台。
数据可视化。对于一些数据分析结果做到可视化,能将数据通过图形或者报表的方式展示给决策者。
其中,1和2看似简单无味,但对于整个数据治理却是至关重要。


        DAMA对数据管控体系有比较明确的阐述,但真的要做好数据治理却不是那么容易。
        目前国内实施数据治理的企业也是凤毛麟角,而且每一家都有自己的理解,实施方案大同小异,却又都不完整。而那些启动了数据治理的企业也几乎都没有发挥数据治理的价值,持续推动数据治理,目前国内数据治理实施最好的银行,成熟度也只有3分。数据治理推动难,后继无力的主要原因在于没有让数据治理的工作价值变现。对数据治理有过了解的人都明白,数据治理是对数据标准、数据质量、数据安全、主数据、元数据、数据模型等一系列数据相关的领域进行规范化,标准化管理的一些列动作,措施。但如果只把数据治理局限在这些领域,将脱离业务人员,导致数据治理工作脱离业务方,从而无法让数据价值得到变现,因为,我们知道数据治理离不开业务,业务是驱动数据治理的原动力,因此,我认为在开展数据治理工作的时候,必须要仔细思考如何将数据治理与数据应用、数据服务接口,让数据的价值得到变现,促进业务人员对数据治理的信心。


        最后,数据治理是长期复杂性的工作,设计的人员角色复杂,因此整个数据治理工作应该循序渐进,由易到难,逐步完善,迭代优化。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 采用基于流程的风险管理方法避免运营灾难

    采用基于流程的风险管理方法避免运营灾难

    风险规避和风险管理似乎是决策制定的热门话题 - 而且有充分的理由。风险伴随着潜在的巨大运营,财务,声誉和法律影响,所以尽一切可能对其进行……查看详情

    发布时间:2019.02.15来源:亿信华辰浏览量:130次

  • 数据治理对医疗保健未来的重要性

    数据治理对医疗保健未来的重要性

    在过去的一年里,我已经广泛报道了基因组数据在医疗保健领域日益增长的重要性。其中一个最好的例子是英国生物银行与欧洲基因组 - 表型库(EG……查看详情

    发布时间:2019.03.08来源:亿信华辰浏览量:117次

  • 数据治理:将数据从源头进行清洗

    数据治理:将数据从源头进行清洗

    数据一切都与技术的集中化有关。数据安全地存储在企业大型机上,只有具备导航预处理数据库技能的程序员才能访问它。差不多四十年后,所有这些都与……查看详情

    发布时间:2019.06.20来源:简书浏览量:143次

  • 企业做好数据治理才能更快更好地推进数字化转型

    企业做好数据治理才能更快更好地推进数字化转型

    企业做好数据治理才能更快更好地推进数字化转型数据治理之“困”在谈到当前的数据治理之“困”时,主要有四方面:……查看详情

    发布时间:2019.12.12来源:知乎浏览量:94次

  • 数据治理知识:怎么判断数据质量是否健康?

    数据治理知识:怎么判断数据质量是否健康?

    从数据质量检查开始:导出数据的子集并通过亿信华辰数据质量管理平台运行它 。这项软件服务可快速评估您数据的有效性、完整性和唯一性。……查看详情

    发布时间:2021.06.10来源:亿信华辰数据治理知识库浏览量:147次

  • 6个实施数据治理的最佳实践方法

    6个实施数据治理的最佳实践方法

    在寻找数据治理最佳实施方法时,您可以从已有的各种流程和模板工作的人那里学到很多东西。尽管每个企业都不同,您将需要根据流程调整数据治理实践……查看详情

    发布时间:2021.07.28来源:亿信数据治理知识库浏览量:175次

  • 谈谈工业企业数据治理建设的趋势

    谈谈工业企业数据治理建设的趋势

    工业企业数据环境复杂,数据类型多、产生速度快、数据量大、数据质量不高、数据人才匮乏,因此如何发挥和挖掘数据要素的价值成为当代企业关注的话……查看详情

    发布时间:2022.06.28来源:互联网浏览量:278次

  • 数据治理——精细科学的政策平衡

    数据治理——精细科学的政策平衡

    数据泄露、滥用、歧视这些负面事件如同天空中的阴霾,不断加深着人们对数据治理的悲观情绪。   的确,这一年被数据泄露贯穿始终,规模日……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:94次

  • 数据治理与数据质量

    数据治理与数据质量

    单纯从数据层面来看,数据体系包括治理、管理和应用三个部分。治理是负责解决人与人之间的事,管理负责各个职能领域,应用则是价值的实现。不讨论……查看详情

    发布时间:2019.01.03来源:Magic浏览量:84次

  • 关注:2019年大数据的10大发展趋势

    关注:2019年大数据的10大发展趋势

    如今,人们寻求获得更多的数据有着充分的理由,因为数据分析推动了数字创新。然而,将这些庞大的数据集转化为可操作的洞察力仍然是一个难题。而那……查看详情

    发布时间:2019.02.12来源:亿信华辰浏览量:96次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议