银行的数据治理最佳实践

发布时间:2018.11.29来源:知乎浏览量:120次标签:数据治理

        数据治理本身分狭义和广义两个区别,狭义的治理主要是组织、制度、流程这些,data governance的一个定义就是 the management of management;广义的治理包括数据质量、数据标准这些。数据治理强调两点,一是高层支持,二是各部门广泛参与。这两点在银行必须都贯彻,越体制内就越听监管的话,所以对于数据治理也就最重视。银监会有数据质量良好标准,非现场检查加现场检查,这是银行数据治理工作最大的督导。银行内数据治理各项工作的开展都要想好这两个因素,搞定了就能事半功倍。


        说句题外话,银行有成建制成体系的数据管理工作,这在各个行业内属于最好的;用成熟度衡量的话,基本都是3.0水平。其他传统行业没有这么强大的动力,互联网电商又没有这个必要,13年银监会数据质量良好标准评估指南中的最佳实践就来源于这几家。


        此外,数据治理对人的要求蛮高,要懂业务、懂数据、懂技术,所谓上能写制度办法,下能查数分析;另外,还要懂权衡、懂策略,甚至学学兵法,因为具体工作八成都是跟人有关。要求虽高,但实际上具体工作挺无聊的,因为挫败感占的比例要远高于成就感,个中体会只有行内人能了解了。


        银行数据治理,有两件事情非常棘手,一个是有些系统陈旧,文档少,没人讲的清楚具体业务怎样纪录数据,也有一些系统中比较冷门的业务可能也存在类似情况,无从谈起数据治理了,当然这样情况是少数,对全行数据治理影响不大。另一个情况是银行内部按照业务部门组织系统,数据分属各个业务部门,其中利害关系复杂,没有大的魄力很难

在数据治理上有太大成果。
最近也在做数据治理相关一些工作,要做好数据治理,应该要解决好如下一些问题。
1、要全行统一步调,自上而下推动数据治理工作。这点很容易形式上重视,但落地执行时各种阻力
2、要全行统一规划,按照统一标准生产数据,并提交完备的数据文档
3、要按照统一标准加工数据,包括数据采集,清洗,存储等
4、要有一套完整的数据处理的平台和数据质量监控分析工具


        IT部门的数据治理工作,制度和流程层面的东西不谈。
        数据标准化。对共用数据制定标准,达成系统建设共识,降低数据转换代价。银行部门使用的系统较多,每个系统的定义千差万别,但都有一些共用的数据,如货币代码、国家代码、日期(有些8位,有些10位,有些...)等,这些数据的使用都要有明确标准和使用场景。


        数据流向可追溯,数据用途明确化。数据流向可追溯,数据用途明确化。系统之间数据传递(如文件)可追溯,如清楚数据文件来源于那里,中途经过了那些系统的过滤,最终被哪些用户使用。
数据交换平台化。建设数据交换平台,支持数据流动。即有一个数据交换平台支持系统之间的数据流动,对数据的流出方和流入方的权限和规则加以控制。


        数据市集化。共享类数据集市化,即需即取。系统和系统之间的共享数据共享与数据市集,供相关的经营分析系统使用,或者分析结果后最后回吐到市集。
数据使用工具化。建设数据ETL,对数据进行清洗,变形,装载。
数据仓库化/大数据平台。存储历史数据供经营分析使用。
数据分析平台化。提供建模分析使用工具,进行经营分析,形成分析结果,回吐给其它平台。
数据可视化。对于一些数据分析结果做到可视化,能将数据通过图形或者报表的方式展示给决策者。
其中,1和2看似简单无味,但对于整个数据治理却是至关重要。


        DAMA对数据管控体系有比较明确的阐述,但真的要做好数据治理却不是那么容易。
        目前国内实施数据治理的企业也是凤毛麟角,而且每一家都有自己的理解,实施方案大同小异,却又都不完整。而那些启动了数据治理的企业也几乎都没有发挥数据治理的价值,持续推动数据治理,目前国内数据治理实施最好的银行,成熟度也只有3分。数据治理推动难,后继无力的主要原因在于没有让数据治理的工作价值变现。对数据治理有过了解的人都明白,数据治理是对数据标准、数据质量、数据安全、主数据、元数据、数据模型等一系列数据相关的领域进行规范化,标准化管理的一些列动作,措施。但如果只把数据治理局限在这些领域,将脱离业务人员,导致数据治理工作脱离业务方,从而无法让数据价值得到变现,因为,我们知道数据治理离不开业务,业务是驱动数据治理的原动力,因此,我认为在开展数据治理工作的时候,必须要仔细思考如何将数据治理与数据应用、数据服务接口,让数据的价值得到变现,促进业务人员对数据治理的信心。


        最后,数据治理是长期复杂性的工作,设计的人员角色复杂,因此整个数据治理工作应该循序渐进,由易到难,逐步完善,迭代优化。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业构建数据中台是否存在一个量化或判断的标准?

    企业构建数据中台是否存在一个量化或判断的标准?

    对这个问题有几种解读,第一种解读是说企业是否要构建自己的数据中台,这个问题有没有标准?以这个问题来讲的话,我们认为所有的企业它都需要数据……查看详情

    发布时间:2021.02.01来源:知乎浏览量:137次

  • 完善和高效的数据交换管理平台

    完善和高效的数据交换管理平台

    EsDataExchange是亿信华辰公司推出的一款解决企业和政府部门数据交换管理的成熟产品,该平台是亿信华辰公司自主研发的具有独立知识……查看详情

    发布时间:2020.04.23来源:知乎浏览量:88次

  • 数据质量—并非所有数据都是平等的

    数据质量—并非所有数据都是平等的

    数据质量是调节数据以满足业务用户特定需求的过程。准确性,完整性,一致性,及时性,唯一性和有效性是数据质量的主要衡量标准。……查看详情

    发布时间:2019.04.04来源:亿信华辰浏览量:120次

  • 数据治理和成熟度评估模型

    数据治理和成熟度评估模型

    成熟度评估没有“ 一种模式适合所有人 ”。……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:114次

  • 数据管理和物联网

    数据管理和物联网

    数十亿带传感器的东西环绕着人们和他们的生活。这些物联网(IoT)与人,家庭,工厂,工作场所,城市,农场和车辆互动。Gartner预测,到……查看详情

    发布时间:2019.02.20来源:亿信华辰浏览量:115次

  • 数据治理:发现阶段

    数据治理:发现阶段

    从数据治理计划的发现阶段开始,将为您提供更大的成功概率。……查看详情

    发布时间:2018.12.21来源:亿信华辰浏览量:91次

  • 数据治理方案有哪几个步骤?

    数据治理方案有哪几个步骤?

    随着业务发展,公司对数据应用使用场景越来越多,数据也会随着业务快速增长,随之而来,数据质量、数据存储、数据模型建设等使用规范上都会出现一……查看详情

    发布时间:2022.03.15来源:小亿浏览量:628次

  • 颠覆性变革即将到来,金融行业大数据治理该怎么做?

    颠覆性变革即将到来,金融行业大数据治理该怎么做?

    说到大数据应用所带来的颠覆性变革,没有一个行业比金融行业更加明显。从客户画像到精准营销,从风险管控到运营优化,几乎所有的业务环节都与大数……查看详情

    发布时间:2018.10.10来源:it168浏览量:91次

  • 数据安全治理的基本思路

    数据安全治理的基本思路

    我们的世界正在进入一个奇怪的分裂状态:一方面人们为大数据时代即将在各个领域发生的革命性进步而激动难眠,另一方面人们也在为数据安全和隐私保……查看详情

    发布时间:2019.06.14来源:数据杂志浏览量:100次

  • 言简意赅带你探究大数据治理的真面目

    言简意赅带你探究大数据治理的真面目

    在“十四五”规划和2035远景目标中,治理一词共出现了119次,这一数字是惊人的。数据治理已然成为整个社会转型的重要赛道,数字经济时代下……查看详情

    发布时间:2022.01.23来源:小亿浏览量:114次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议