银行的数据治理最佳实践

发布时间:2018.11.29来源:知乎浏览量:146次标签:数据治理

        数据治理本身分狭义和广义两个区别,狭义的治理主要是组织、制度、流程这些,data governance的一个定义就是 the management of management;广义的治理包括数据质量、数据标准这些。数据治理强调两点,一是高层支持,二是各部门广泛参与。这两点在银行必须都贯彻,越体制内就越听监管的话,所以对于数据治理也就最重视。银监会有数据质量良好标准,非现场检查加现场检查,这是银行数据治理工作最大的督导。银行内数据治理各项工作的开展都要想好这两个因素,搞定了就能事半功倍。


        说句题外话,银行有成建制成体系的数据管理工作,这在各个行业内属于最好的;用成熟度衡量的话,基本都是3.0水平。其他传统行业没有这么强大的动力,互联网电商又没有这个必要,13年银监会数据质量良好标准评估指南中的最佳实践就来源于这几家。


        此外,数据治理对人的要求蛮高,要懂业务、懂数据、懂技术,所谓上能写制度办法,下能查数分析;另外,还要懂权衡、懂策略,甚至学学兵法,因为具体工作八成都是跟人有关。要求虽高,但实际上具体工作挺无聊的,因为挫败感占的比例要远高于成就感,个中体会只有行内人能了解了。


        银行数据治理,有两件事情非常棘手,一个是有些系统陈旧,文档少,没人讲的清楚具体业务怎样纪录数据,也有一些系统中比较冷门的业务可能也存在类似情况,无从谈起数据治理了,当然这样情况是少数,对全行数据治理影响不大。另一个情况是银行内部按照业务部门组织系统,数据分属各个业务部门,其中利害关系复杂,没有大的魄力很难

在数据治理上有太大成果。
最近也在做数据治理相关一些工作,要做好数据治理,应该要解决好如下一些问题。
1、要全行统一步调,自上而下推动数据治理工作。这点很容易形式上重视,但落地执行时各种阻力
2、要全行统一规划,按照统一标准生产数据,并提交完备的数据文档
3、要按照统一标准加工数据,包括数据采集,清洗,存储等
4、要有一套完整的数据处理的平台和数据质量监控分析工具


        IT部门的数据治理工作,制度和流程层面的东西不谈。
        数据标准化。对共用数据制定标准,达成系统建设共识,降低数据转换代价。银行部门使用的系统较多,每个系统的定义千差万别,但都有一些共用的数据,如货币代码、国家代码、日期(有些8位,有些10位,有些...)等,这些数据的使用都要有明确标准和使用场景。


        数据流向可追溯,数据用途明确化。数据流向可追溯,数据用途明确化。系统之间数据传递(如文件)可追溯,如清楚数据文件来源于那里,中途经过了那些系统的过滤,最终被哪些用户使用。
数据交换平台化。建设数据交换平台,支持数据流动。即有一个数据交换平台支持系统之间的数据流动,对数据的流出方和流入方的权限和规则加以控制。


        数据市集化。共享类数据集市化,即需即取。系统和系统之间的共享数据共享与数据市集,供相关的经营分析系统使用,或者分析结果后最后回吐到市集。
数据使用工具化。建设数据ETL,对数据进行清洗,变形,装载。
数据仓库化/大数据平台。存储历史数据供经营分析使用。
数据分析平台化。提供建模分析使用工具,进行经营分析,形成分析结果,回吐给其它平台。
数据可视化。对于一些数据分析结果做到可视化,能将数据通过图形或者报表的方式展示给决策者。
其中,1和2看似简单无味,但对于整个数据治理却是至关重要。


        DAMA对数据管控体系有比较明确的阐述,但真的要做好数据治理却不是那么容易。
        目前国内实施数据治理的企业也是凤毛麟角,而且每一家都有自己的理解,实施方案大同小异,却又都不完整。而那些启动了数据治理的企业也几乎都没有发挥数据治理的价值,持续推动数据治理,目前国内数据治理实施最好的银行,成熟度也只有3分。数据治理推动难,后继无力的主要原因在于没有让数据治理的工作价值变现。对数据治理有过了解的人都明白,数据治理是对数据标准、数据质量、数据安全、主数据、元数据、数据模型等一系列数据相关的领域进行规范化,标准化管理的一些列动作,措施。但如果只把数据治理局限在这些领域,将脱离业务人员,导致数据治理工作脱离业务方,从而无法让数据价值得到变现,因为,我们知道数据治理离不开业务,业务是驱动数据治理的原动力,因此,我认为在开展数据治理工作的时候,必须要仔细思考如何将数据治理与数据应用、数据服务接口,让数据的价值得到变现,促进业务人员对数据治理的信心。


        最后,数据治理是长期复杂性的工作,设计的人员角色复杂,因此整个数据治理工作应该循序渐进,由易到难,逐步完善,迭代优化。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 亿信华辰成为DAMA数据管理知识体系授权培训基地

    亿信华辰成为DAMA数据管理知识体系授权培训基地

    2021年4月,亿信华辰被正式授权为DAMA中国(国际数据管理协会-中国分会)数据管理知识体系培训基地,成为DAMA在数据管理领域专业人……查看详情

    发布时间:2021.06.22来源:亿信华辰浏览量:114次

  • 数据资产管理实践白皮书(2.0版)

    数据资产管理实践白皮书(2.0版)

    本白皮书版权属于中国信息通信研究院云计算与大数 据研究所,并受法律保护。转载、摘编或利用其它方式使用 本白皮书文字或者观点的,应注明……查看详情

    发布时间:2019.09.02来源:中国信息通信研究院云计算与大数据研究所浏览量:398次

  • 企业数据治理价值

    企业数据治理价值

    数据治理是根据数据治理政策,通过组织人员、流程和技术的相互协作,对数据从形态、内容和关系等层面进行规范管理,提升数据的服务能力,以实现数……查看详情

    发布时间:2019.09.30来源:CSDN浏览量:134次

  • 数据质量管理趋势

    数据质量管理趋势

    进一步信息又可分为物理信息和语义信息两类,其中物理层面的信息反映基础的数据结构;语义信息属于进阶有含义的语义数据结构,反映人类的视角。……查看详情

    发布时间:2019.11.15来源:知乎浏览量:132次

  • 数据清理的终极指南——亿信华辰

    数据清理的终极指南——亿信华辰

    我花了几个月的时间分析来自传感器、调查及日志等相关数据。无论我用多少图表,设计多么复杂的算法,结果总是会与预期不同。……查看详情

    发布时间:2019.03.20来源:数据清理浏览量:107次

  • 数据质量分析主要包括那些内容?

    数据质量分析主要包括那些内容?

    数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。……查看详情

    发布时间:2019.11.13来源:知乎浏览量:219次

  • 数据治理-数据治理标准化的价值

    数据治理-数据治理标准化的价值

    标准的数据指标体系为各主题的数据分析提供支持,提升数据处理和分析效率,提供业务指标的事前提示、事中预警、事后提醒,实现数据驱动管理,帮助……查看详情

    发布时间:2020.11.08来源:知乎浏览量:104次

  • 超越法规遵从:从数据治理创造业务价值

    超越法规遵从:从数据治理创造业务价值

    基于模型的,基于标准的数据治理语义方法正迅速成为整个金融领域的行业规范。这方面的一些最普遍和开拓性的努力是由企业数据管理委员会(EDMC……查看详情

    发布时间:2019.02.28来源:亿信华辰浏览量:150次

  • 数据标准在数据资产管理中的意义

    数据标准在数据资产管理中的意义

    尽管出现了很多专家和专著,但真正理解这个概念的人并不多,懂得如何实操数据资产管理、在企业中真正落地的更寥寥无几。笔者有幸参与了国内几个典……查看详情

    发布时间:2019.03.12来源:亿信华辰浏览量:138次

  • 数据治理需要什么?

    数据治理需要什么?

    数据治理是关于启用和鼓励有关数据的良好行为,以及限制产生风险的行为。……查看详情

    发布时间:2019.03.20来源:亿信华辰浏览量:131次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议