数据治理的发展历程

发布时间:2018.11.19来源:艾米丽华盛顿浏览量:175次标签:数据治理

  数据治理技术的发展使得其中最好的技术为组织的数据景观提供了完全的透明性,并为业务用户在搜索、访问和应用数据时提供了一种方便快捷的体验。

     它让数据分析有效地服务于企业的任何工作。并且它确保整个数据供应链的信息流和功能的数据生态系统的健康。这些数据管理工作的根本是数据治理,其核心是提供一个组织的数据资产的能见度,加强问责制,并使其能够得到充分利用。


数据治理不是一个新的实践,但它是一个不断发展的实践。今天的数据治理与五年前甚至两年前大不相同。数据治理的发展经历了多年的尝试和错误,以及不断进步的技术。每一次有经验上的失误,每一次就会有对应的进步。这便是数据治理在发展进程中的自我完善。这些解决方案以业务流程自动化为特色,并侧重于提高数据问责制和理解。


数据治理的起始

在许多组织中,数据治理计划开始于使用电子表格或MicrosoftSharePoint等基本工具的手动文档练习。来自单一业务领域的业务涉众将使用这些简单的工具记录数据定义。并定义部门数据资产的所有权/管理责任。通常,这些实施方案仅限于特定的部门或项目。


在IT部门内,数据治理工作通常是从遵从性的角度关注风险缓解,或者管理和理解技术数据谱系。这有助于用户理解数据是如何随时间移动而转换的,以确保遵企业内部或项目需求的相关规则。


然而,这种数据治理模型隔离了业务单元和IT;并且未能将数据作为关键业务资产加以利用。此外,随着数据量的增长,利用电子表格和SharePoint来记录治理工作很快就变得不可扩展和不可持续。


因此,各企业意识到,他们需要摆脱孤立的方法,将业务和技术数据融合在一起。于是他们没有使用电子表格来记录有关数据的信息,而是采用了供应商提供的面向数据治理的工具。


从电子表格到基于供应商的商业工具

数据治理工具帮助组织将业务和技术数据合并为单一视图、管理基本谱系,并创建工作流来管理数据资产以提供透明度。这些工具帮助企业为其的数据资产提供业务定义和所有权/管理责任。因此,当组织中的成员对他们的数据有疑问时,他们都知道该访问什么资源去核实。


一开始,这个效果很好。但是,随着大数据栈、流数据和数据湖等新技术的引入,数据量和深度都在增加,这些工具便很快被淘汰了。


诸如GDPR、BCBS 239、CCAR、Solvency II和MiFID等监管要求也更加强调数据。用户开始寻找利用数据的新的创造性的方法。他们越来越希望能够在搜索、请求和访问组织的数据资产时候模仿“Amazon Marketplace”的体验。


现代商业数据治理

目前,新的数据治理技术和完整的数据治理框架解决了传统遗留工具通过利用机器学习、自动化和推荐引擎收集、验证和分析数据所面临的挑战。

其目标是大大减少以往在填充和维护数据治理工具方面的手工工作。此外,现在的工具应该使搜索数据成为业务用户简单而成功的过程。通过提供一个直观易用的界面来定制他们如何消费数据。例如:它模仿亚马逊的客户体验模型,快速方便的购物。


为了实现这些目标,企业必须将数据访问、数据质量和机器学习分析扩展到为其数据需求提供自助服务的业务用户。


目前,按需经济也创造了要求很高的消费者。而数据消费者有同样的特性。业务用户经常需要快速查找、排序和分析数据,因为在节奏快、竞争激烈的商业环境中,洞察的速度至关重要。现代数据治理还可以将以前单独使用的学科结合在一起,使业务用户能够在不需要专门技术知识的情况下对数据做更多的工作。


通过连接可视化数据准备、数据质量、机器学习、治理工作流和仪表板等学科,组织可以授权业务用户执行以前需要IT资源的技术干预和专门知识的功能。


目前的现代数据治理工具允许业务用户利用直观的拖放界面来快速组合数据集。这些工具应用预先打包的数据质量例程而不需要复杂的编码,然后通过应用机器学习算法来分析数据以充实业务用户需求。


最终,业务用户有权快速使用可视化仪表板中的输出,并提供有意义的数据度量,以便作出决策。


向以业务为中心的数据治理模式的发展还需要零代码工作流,具有易于使用的接口和预定义的工作流例程,因此业务用户可以加快新工作流的创建和现有工作流的编辑,而无需依赖编码专业知识。


这有助于向围绕业务用户设计的更加自动化、自给自足的治理框架发展。这将永远是一个持续的过程。


然而,对于那些继续维护和开发数据治理模型的人来说,他们将提高整个企业的效率和盈利能力,并帮其获得竞争优势。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理为什么会重新引起关注?

    数据治理为什么会重新引起关注?

    这突出了数据治理的重要性。由数据治理研究所定义为“信息相关过程的决策权和责任系统,根据商定的模型执行,描述谁可以采取什么行动与什么信息,……查看详情

    发布时间:2019.09.04来源:知乎浏览量:172次

  • 中小行纷纷设立数据治理专营部门

    中小行纷纷设立数据治理专营部门

    “数据治理基础建设缺失、人才匮乏、意识觉醒较晚。”一名来参加今日第三届中国数字银行论坛的西部中小银行人士,用了三个并列短句,来形容目前中……查看详情

    发布时间:2019.11.29来源:CSDN浏览量:124次

  • 创新者的破局之路:煤炭行业首个集团级数据治理项目落地

    创新者的破局之路:煤炭行业首个集团级数据治理项目落地

    工业互联网激起能源领域一池春水,新一代信息技术则是其不断发展的加速器。山东能源集团下属临沂矿业集团有限责任公司(以下简称临矿集团)率先在……查看详情

    发布时间:2021.01.29来源:头条浏览量:161次

  • 什么是元数据?元数据管理的作用是什么?

    什么是元数据?元数据管理的作用是什么?

    为了更好地理解企业拥有的数据,必须访问关联的元数据。 元数据管理帮助您判断数据来自何处,其在不同系统中的位置以及如何使用。元数据用于管理……查看详情

    发布时间:2021.03.31来源:数据治理研究院浏览量:334次

  • 数据治理和当今的新数据目标

    数据治理和当今的新数据目标

    尽管实施全面的治理计划似乎令人生畏,但拥有有效数据治理策略和MDM解决方案的公司不断寻找新方法从数据中提取价值。……查看详情

    发布时间:2019.03.25来源:亿信华辰浏览量:126次

  • 数据资产管理方案之如何让数据化为价值

    数据资产管理方案之如何让数据化为价值

    数据是资产的概念已经成为行业共识。然而现实中,对数据资产的管理和应用往往还处于摸索阶段,数据资产管理面临诸多挑战。主要分为以下三点:1、……查看详情

    发布时间:2020.08.14来源:知乎浏览量:196次

  • 数据都成为生产要素了?数据该如何治理?

    数据都成为生产要素了?数据该如何治理?

    先说说数据,其实现在说的数据和过去说的数据相比差别非常大,现在所说的数据不是一个静态文档,它是流动的数据,碎片化的数据,以各种各样的形式……查看详情

    发布时间:2020.11.23来源:知乎浏览量:245次

  • 数据治理运营:团队

    数据治理运营:团队

    这是关于数据治理运作的两部分系列的第二部分。“ 数据治理运作:差距 ”系列的第一部分讨论了需求是如何产生的,数据治理运营所需的一些主要原……查看详情

    发布时间:2018.11.14来源:Jayakumar Rajaretnam浏览量:126次

  • 简述数据资产管理方案必须注意的6点

    简述数据资产管理方案必须注意的6点

    “数据资产管理”一词,在国内首次由DAMS(中国数据资产管理峰会)组委会正式提出。首届“中国数据资产……查看详情

    发布时间:2020.08.14来源:知乎浏览量:150次

  • 走向人工智能治理的趋势

    走向人工智能治理的趋势

    这是人工智能(AI)驱动的自动化和自动机器的时代。自我改进,自我复制,自主智能机器日益普及和迅速扩大的潜力刺激了网络空间,地球空间和空间……查看详情

    发布时间:2019.03.13来源:亿信华辰浏览量:110次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议