金融行业数据治理的问题与对策

发布时间:2019.10.16来源:知乎浏览量:117次标签:数据治理

目前金融行业数据治理的问题所遇到的问题
数据治理
(1)缺少数据治理企业文化
银行数据治理工作不是个别部门或少数人员能够妥善完成的,而是需要各部门之间、各层级之间的相互支持与协作,尤其需要加强科技部门与业务部门之间的合作。因此,在数据资产被高度认可的今天,数据治理不仅需要作为银行的一项职能工作在企业内贯彻执行,而应该建立一种以数据资产为导向的企业文化,将数据治理与信息科技治理、公司治理有机地结合起来。

(2)基础数据质量的改进刻不容缓
数据质量的改进是一项长期的任务,需要从文化、组织、制度、流程和质量检查管理工具等多个层面持续改进,并依靠数据认责机制,确保数据质量问题能够得以快速有效的解决;数据不一致需要通过推进数据标准化进行系统问协调,也需要建设统一的可信数据源。

(3)没有完善的组织和制度,缺乏有效的管理机制
目前使用数据的部门由于具有明确的、迫切的数据需求,同时面临着内外部的多种压力,成为处理问题的主要推动者,没有一个统一的数据管理部门,当问题涉及跨系统、跨条线时,沟通成本较高、协调难度也较大,问题难以得到彻底解决。

健全的数据治理组织机制是全面开展数据治理工作的基础。由专业的业务和技术人员组成的数据治理组织将承担数据管理者的职责,负责落实全行数据治理的工作,同时建立决策、沟通、监控、考核的机制,创造全行数据治理文化,有效地解决银行数据的责、权、利的问题。

(4)缺乏完善的系统支撑和技术手段
银行系统数据量庞大,如果数据治理工作不依靠技术手段,没有相应的平台工具支撑,仅依靠手工处理,难以将数据治理工作做好,因此,需要先进的技术手段、配套的系统支撑数据治理工具高效有序的开展。

金融行业数据治理的问题与对策

亿信华辰在数据治理领域也持续深耕,从数据质量管理平台、元数据管理平台,到发布智能数据治理平台-睿治,实现了数据治理全场景覆盖,包含九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,所有模块可自由组合,并支持本地或云上使用,全面满足客户各类治理需求。

数据治理

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议