实施数据治理 - 学到3个主要经验教训

发布时间:2018.12.21来源:亿信华辰浏览量:189次标签:数据治理

福布斯最近的一篇文章(CIO注意趋势)确定了以下主要趋势:

1. 建立创新文化

2. 成熟的数据治理和维护

3. 从云中获取真正的价值

4. 掌握与网络安全相关的不断变化的威胁

5. 容器和微服务是IT敏捷性的驱动力

出于某种原因,数据治理占据了第二位。显而易见的原因是围绕数据隐私法规的所有关注,例如GDPR和CCPA,这是理所当然的。数据治理有助于通过元数据管理促进个人信息的清点和标记,并可通过操作模型帮助定义风险,优先级和业务需求。

数据管理变得“需要拥有”而不是“乐于拥有”的另一个原因是数据扩散继续呈上升趋势。数据以多种方式创建,不再始终被一致地摄取,标准化和记录。个人利用自助服务功能将数据集引入自己的孤岛。因此,组织发现很难知道存在哪些数据,它所在的位置,它的含义以及如何对其进行修改和利用。

文章还指出:有些人将数据称为新的商业石油。它确实是新的原油。问题是你如何将它从商品转变为精致的东西,你可以从中获得价值。“这是真的!”

我实际实现数据治理的三个关键学习是:

1. 初步评估和路线图是必要的。

2. 实现经常失败。

3. 如果您处于数据治理“维护”模式,那么很可能您还没有完全利用所有数据治理所能提供的功能。

初步评估和路线图是必要的

数据治理功能必须适合组织,并且理想情况下它是企业范围的方法。了解影响成功数据治理功能的各个方面的当前状态非常重要。 

· 是否存在可以与之对齐的整体数据管理策略?

· 数据治理功能需要支持哪些关键业务需求?

· 是否建立了治理结构,包括利益相关者,章程,角色和责任?

· 在利益相关者之间是否有确定和解决优先级问题的明确流程?

· 是否有定义的问题升级和解决流程?

· 是否已定义,开发和验证数据管理和数据隐私策略?

· 是否有一种方法可确保在整个数据生命周期内遵守与数据相关的政策,流程和标准?

· 是否存在根据利益相关者标准监控数据治理活动的指标?

· 如果元数据是数据治理计划的一部分,那么人员,流程和工具是否被定义,理解和遵循?

· 如果数据质量是数据治理计划的一部分,那么人员,流程和工具是否被定义,理解和遵循?


实现经常失败

需要建立数据治理来解决特定的数据管理需求,并且需要适合组织。就像敏捷一样,利益相关者需要实现和接受数据治理的迭代方面。失败的一个典型原因是数据治理活动的时机。例如:

· 让利益相关者过早参与其中没有任何东西让他们真正做到。更好的方法是确保定义运营模型和初始流程,然后开始吸引利益相关方。从基于初始关注领域的利益相关者子集开始,然后扩展可能是有益的。

· 为利益相关者提供角色,而不对该角色进行任何培训

· 安装数据治理工具,无需设计流程和工作流程

· 在没有章程,范围,目标或支持数据治理办公室的情况下继续进行数据治理,以确保取得进展

· 不发布培训和沟通,以提供计划实质内容

如果您处于数据治理“维护”模式,那么很可能您还没有完全利用所有数据治理所能提供的功能

一旦开发并正在运行,有很多方法可以利用可靠的数据治理操作模型。通常,组织可以启动数据治理功能,以确保开发和管理业务词汇表和其他元数据。然后,他们可以进入数据质量管理计划,利用已经识别的业务数据域所有者,业务数据管理员和技术数据管理员。随后,如果最初手动管理过程,则可以实施和配置工具以支持元数据和/或数据质量。之后,组织可以继续利用数据治理功能来确保策略到位并受到监控,以支持数据生命周期管理或法规遵从性。总体而言,范围可能包括:

· 元数据管理

· 数据质量管理

· 参考和主数据管理

· 数据生命周期管理

· 数据仓库/数据湖泊管理

· 法规遵从性

· BI和报告管理

· 数据政策管理

· 数据架构管理

这些领域中的每一个都可以利用强大的数据治理运营模式,尤其是数据治理办公室以及数据管理员,以确保定义需求,制定流程和标准,遵循最佳实践,并且合适的人员参与正确的时间。

尽管数据治理在开发过程中可能会有些流动和迭代,但仍有最佳实践和总体思路定位的路线图仍需要设计和遵循才能获得成功,并继续为组织增加价值。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 什么是数据治理以及数据治理架构

    什么是数据治理以及数据治理架构

    数据治理(DataGovernance),是企业数据治理部门发起并推行的,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的……查看详情

    发布时间:2018.12.06来源:数据治理浏览量:227次

  • 数据治理和风险管理

    数据治理和风险管理

    风险管理对于任何数据驱动的业务都至关重要。前联邦调查局局长罗伯特·穆勒(Robert Mueller)曾说过,“只有两种类型的公司:那些……查看详情

    发布时间:2019.01.27来源:亿信华辰浏览量:156次

  • 四说大数据时代“神话”:从大数据到深数据

    四说大数据时代“神话”:从大数据到深数据

    为国内最大的电商平台之一,苏宁每天要处理数量巨大的数据。为了更快速高效地处理这些数据,苏宁调度平台采取了哪些措施呢?……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:160次

  • 为什么数据成为新的生产要素,怎么理解

    为什么数据成为新的生产要素,怎么理解

    在经济学中,生产要素又称为生产输入,是人们用来生产商品和劳务所必备的基本资源,主要包括土地、劳动、资本、企业家才能和数据。生产要素促进生……查看详情

    发布时间:2020.11.25来源:知乎浏览量:367次

  • 你以为建设大数据平台就好了,还差这一步

    你以为建设大数据平台就好了,还差这一步

    长期以来,大家一直忽略一个问题:数据跟原来的企业应用系统一样,它是需要被管理的。企业逐渐了解数据所蕴含的价值,对数据的重视程度越来越高。……查看详情

    发布时间:2019.06.03来源:亿信华辰浏览量:110次

  • 企业架构与数据治理:探索链接

    企业架构与数据治理:探索链接

    从公司意义上讲,创新管理是通过采用创新的想法,产品,流程和业务模型,快速有效地实现组织目标。大多数组织开始意识到,为了推动业务增长并保持……查看详情

    发布时间:2019.02.19来源:亿信华辰浏览量:161次

  • 高质量的数据一般包括哪些特征?

    高质量的数据一般包括哪些特征?

    ​基于数据决策的前提是数据可靠且相关,数据必须是“真实可信的”,否则“输出将是误导和无效的”。但是企业所收集的数据可能不完全,或者更新不……查看详情

    发布时间:2022.06.09来源:小亿浏览量:3401次

  • 企业应该将数据治理作为加速数字化转型的催化剂

    企业应该将数据治理作为加速数字化转型的催化剂

    随着许多业务系统和应用程序(包括采购,呼叫中心交互,网站访问,移动应用程序使用以及越来越多的物联网传感器和设备)产生的大量客户数据,应该……查看详情

    发布时间:2019.07.04来源:知乎浏览量:139次

  • 数据整理——大数据治理的关键技术

    数据整理——大数据治理的关键技术

    数据是政府、企业和机构的重要资源。数据治理关注数据资源有效利用的众多方面,如数据资产确权、数据管理、数据开放共享、数据隐私保护等。从数据……查看详情

    发布时间:2019.11.21来源:CSDN浏览量:256次

  • 企业数据治理项目如何落地?

    企业数据治理项目如何落地?

    数据治理在系统层面包括数据标准、元数据、数据质量、生命周期管理、数据安全、数据资产共六大核心模块;在管理层面需要通过数据治理组织、数据治……查看详情

    发布时间:2020.06.29来源:知乎浏览量:148次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议