数据治理、共享交换、数据仓库、数据中心的关系

发布时间:2019.08.07来源:CSDN浏览量:215次标签:数据治理

建数据中心离不开数据,以前设计数据库都是从事务性数据库考虑(做的都是业务系统,思维模式太固定了),没有从数据仓库的角度来统管分析。以下是从数据仓库的角度考虑数据中心的建设:

 

政府的数据中心建设基本就包括这几个步骤:
1、数据源:支持不同部门的各类来源数据,包括文件型、数据库型、Http服务型和JMS消息型,可以读取各类数据
2、数据汇聚:这里是通过软件实现原始数据的读取存储,将不同的数据都存储到各自的数据库;因为保证与每个部门不发生扯皮的问题,所以必须保证读取的原始数据是对的,要独立存储不做任何加工,组织就按照同步的部门科室进行存放;所以就对应数据仓库的ODS层
3、数据处理:这里是对汇聚的原始数据进行初步的ETL处理,实现对数据的清洗、加工,补全各类信息(包括编码字典解释等),这个步骤的目的是实现数据的规范化,这里的数据也是落地存储物理库,作为抽取中间库DWD层
4、数据融合:这里是对规范化的原始数据进行融合处理,建立数据之间的关系模型,比如抽取成独立的人口库模型:

 

数据融合主要是按照一个业务领域进行数据建模。
5、数据集市:是对领域模型数据进行汇总统计分析,将统计分析的结果进行存储,简单解释可以理解为一般业务统计的中间表(提高统计效率,将统计成果进行定期存储),当然这里不止这么点,结合现在时髦的大数据分析,也就是将分析结果在集市层存储,为上层应用提供数据源。
6、最后一个是核心的元数据库,这里的元数据核心要存储以上4个库的表及字段元数据,可以实现整个数据处理过程的追溯。

从以上分析,了解共享交换的同学,可能直接就说了上面的数据汇聚、数据处理不就是传统的交换吗?只是换了一个说法;这个说法也没问题,只是这里是从政府业务和数据仓库的角度来说,传统的交换是直接将原始数据文件读取到后进行了ETL处理,形成交换库;这里是从政府安全追责的角度分析,形成2个步骤;所以数据中心的建设是包括数据交换的,只是交换处理的思路在变化。
从数据处理到数据融合,这里是要创建业务模型,按照业务模型进行数据处理,处理的工具一般也是ETL工具;所以共享交换只是强调了软件技术,没有从整体进行规划,它只是真个数据中心建设里的一个技术工具之一。
从数据融合到数据集市,又有几种形态:1、传统的数据统计,2、数据挖掘,3、大数据分析;这几种技术都可以形成数据集市的数据。

数据治理是一个更大的概念:

 

在数据仓库的基础上,更加强调数据的质量与数据安全;现在的数据治理也是叫大数据治理,是大数据建设的基础,毕竟是强调大数据平台里的核心,数据部分。只有数据是可依靠的,才能用来做大数据分析,否则就是无源之水了,谁也不敢相信。
数据质量,核心就是要依靠元数据的管理;来实现整个数据处理过程的跟踪,知道目标数据的源头可以一步步的追溯到数据的提供者。
数据中心则是一个业务上的叫法,包括机制规范、相关软件、数据、处理过程的构建,都是数据中心建设的步骤。数据中心就是通过数据治理形成可以对外统一提供服务的数据。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理的全过程

    数据治理的全过程

    数据治理是指从使用零散数据变为使用统一主数据、从具有很少或没有组织和流程治理到企业范围内的综合数据治理、从尝试处理主数据混乱状况到主数据……查看详情

    发布时间:2019.08.07来源:CSDN浏览量:113次

  • 数据治理委员会:指导原则

    数据治理委员会:指导原则

    数据所有权 指定义与特定数据集相关的各种责任级别。讨论谁负责特定的数据任务已经使我们机构的数据维护和准确性变得更加简单。……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:130次

  • 大数据时代如何做好数据治理

    大数据时代如何做好数据治理

    企业在建制大数据平台的同时,对进入数据湖的数据进行梳理,并按照数据资产目录的形式对外发布。在发布数据资产之后,则对进出数据湖……查看详情

    发布时间:2018.12.10来源:数据治理浏览量:121次

  • 元数据管理101:什么,为什么以及如何

    元数据管理101:什么,为什么以及如何

    元数据管理已逐渐成为成功的数字化计划战略的最重要实践之一。随着大数据和云等分布式体系结构的兴起,可以创建孤立的系统和数据,元数据管理对于……查看详情

    发布时间:2018.12.19来源:数据治理浏览量:121次

  • 最终有人把数据治理的元数据、主数据等概念讲明白了

    最终有人把数据治理的元数据、主数据等概念讲明白了

    数据治理就是以服务组织战略目标为基本原则,通过组织成员的协同努力,流程制度的制定,以及数据资产的梳理、采集清洗、结构化存储、可视化管理和……查看详情

    发布时间:2022.06.24来源:小亿浏览量:340次

  • 四位一体的大数据治理框架是什么?

    四位一体的大数据治理框架是什么?

    大数据治理有着自身独特的框架,这一框架经由人、物、技术、数据的高度融合而成,大数据的价值与保护在这一框架内被重新定义。除此之外,凡身处这……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:164次

  • 谷歌的记录,gdpr罚款:避免这种命运与数据治理

    谷歌的记录,gdpr罚款:避免这种命运与数据治理

    通用数据保护条例(gdpr)第一次产生了真正的影响,因为谷歌的记录gdpr罚款主导了新闻周期。……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:148次

  • 金融行业大数据标准体系设计

    金融行业大数据标准体系设计

    金融大数据标准体系可分为基础标准、业务标准、治理标准和技术标准四大类。各类标准之间相互联系、相互约束、相互补充,共同构成完整的统一体。同……查看详情

    发布时间:2019.12.27来源:CSDN浏览量:210次

  • 数据治理不应成为吞下难以接受的药物

    数据治理不应成为吞下难以接受的药物

    对于制药公司而言,数据治理是数据管理难题的关键部分。……查看详情

    发布时间:2019.01.17来源:亿信华辰浏览量:131次

  • 数据治理在大数据领域的重要性

    数据治理在大数据领域的重要性

    即使在过去,企业也要面对超出其基础设施和流程处理能力的大量数据,更不用说要从数据中挖掘出对制定有效决策有实际价值的情报了。如今,随着种类……查看详情

    发布时间:2019.12.06来源:CSDN浏览量:125次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议