数据治理、共享交换、数据仓库、数据中心的关系

发布时间:2019.08.07来源:CSDN浏览量:192次标签:数据治理

建数据中心离不开数据,以前设计数据库都是从事务性数据库考虑(做的都是业务系统,思维模式太固定了),没有从数据仓库的角度来统管分析。以下是从数据仓库的角度考虑数据中心的建设:

 

政府的数据中心建设基本就包括这几个步骤:
1、数据源:支持不同部门的各类来源数据,包括文件型、数据库型、Http服务型和JMS消息型,可以读取各类数据
2、数据汇聚:这里是通过软件实现原始数据的读取存储,将不同的数据都存储到各自的数据库;因为保证与每个部门不发生扯皮的问题,所以必须保证读取的原始数据是对的,要独立存储不做任何加工,组织就按照同步的部门科室进行存放;所以就对应数据仓库的ODS层
3、数据处理:这里是对汇聚的原始数据进行初步的ETL处理,实现对数据的清洗、加工,补全各类信息(包括编码字典解释等),这个步骤的目的是实现数据的规范化,这里的数据也是落地存储物理库,作为抽取中间库DWD层
4、数据融合:这里是对规范化的原始数据进行融合处理,建立数据之间的关系模型,比如抽取成独立的人口库模型:

 

数据融合主要是按照一个业务领域进行数据建模。
5、数据集市:是对领域模型数据进行汇总统计分析,将统计分析的结果进行存储,简单解释可以理解为一般业务统计的中间表(提高统计效率,将统计成果进行定期存储),当然这里不止这么点,结合现在时髦的大数据分析,也就是将分析结果在集市层存储,为上层应用提供数据源。
6、最后一个是核心的元数据库,这里的元数据核心要存储以上4个库的表及字段元数据,可以实现整个数据处理过程的追溯。

从以上分析,了解共享交换的同学,可能直接就说了上面的数据汇聚、数据处理不就是传统的交换吗?只是换了一个说法;这个说法也没问题,只是这里是从政府业务和数据仓库的角度来说,传统的交换是直接将原始数据文件读取到后进行了ETL处理,形成交换库;这里是从政府安全追责的角度分析,形成2个步骤;所以数据中心的建设是包括数据交换的,只是交换处理的思路在变化。
从数据处理到数据融合,这里是要创建业务模型,按照业务模型进行数据处理,处理的工具一般也是ETL工具;所以共享交换只是强调了软件技术,没有从整体进行规划,它只是真个数据中心建设里的一个技术工具之一。
从数据融合到数据集市,又有几种形态:1、传统的数据统计,2、数据挖掘,3、大数据分析;这几种技术都可以形成数据集市的数据。

数据治理是一个更大的概念:

 

在数据仓库的基础上,更加强调数据的质量与数据安全;现在的数据治理也是叫大数据治理,是大数据建设的基础,毕竟是强调大数据平台里的核心,数据部分。只有数据是可依靠的,才能用来做大数据分析,否则就是无源之水了,谁也不敢相信。
数据质量,核心就是要依靠元数据的管理;来实现整个数据处理过程的跟踪,知道目标数据的源头可以一步步的追溯到数据的提供者。
数据中心则是一个业务上的叫法,包括机制规范、相关软件、数据、处理过程的构建,都是数据中心建设的步骤。数据中心就是通过数据治理形成可以对外统一提供服务的数据。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理和信任—让你的数据如水般清澈

    数据治理和信任—让你的数据如水般清澈

    根据相关报告,数据治理是“对数据相关事务的决策和权限的行使。”换句话说,它是对必须根据特定标准进行的任何数据输入的控制 。2019年,组……查看详情

    发布时间:2019.06.28来源:知乎浏览量:115次

  • 浅析数据治理与数据安全治理的概念差异

    浅析数据治理与数据安全治理的概念差异

    当我们谈到数据资产的时候,想到最多的就是数据治理,接下来就是数据安全治理,那么这两者之间有什么区别和差异呢?……查看详情

    发布时间:2019.08.14来源:知乎浏览量:158次

  • 企业数字化转型关键 ,数据治理需要关注什么?

    企业数字化转型关键 ,数据治理需要关注什么?

    2019年我国数字经济规模为35.8万亿元,产业数字化占数字经济的比例达到80.2%。新经济领域的高度数字化,通过传导至传统产业的转型升……查看详情

    发布时间:2020.11.08来源:知乎浏览量:140次

  • 如何选择数据治理工具

    如何选择数据治理工具

    有许多场景需要数据治理工具。在严格的行业法规下运营,利用分析软件和/或定期整合关键主题领域的数据的企业将发现自己正在寻找数据治理工具来帮……查看详情

    发布时间:2019.07.04来源:知乎浏览量:103次

  • 安全合作伙伴共同为云和多云合规性增强数据治理和隐私

    安全合作伙伴共同为云和多云合规性增强数据治理和隐私

    企业可以限制这些风险 - 以及手动控制错误配置,云环境政策孤岛和云锁定的潜在风险……查看详情

    发布时间:2019.01.22来源:亿信华辰浏览量:113次

  • 微软收购BlueTalon以支持数据治理产品

    微软收购BlueTalon以支持数据治理产品

    微软今天宣布收购BlueTalon,这是一家总部位于加利福尼亚州雷德伍德市的跨平台数据访问控制解决方案提供商,收购金额不详。Azure ……查看详情

    发布时间:2019.08.02来源:知乎浏览量:92次

  • 企业数据标准管理价值总结

    企业数据标准管理价值总结

    一个数据一般有业务属性、技术属性和管理属性组成,例如:数据项的业务定义、业务规则、质量规则为该数据的业务属性;数据项的名称、编码、类型、……查看详情

    发布时间:2020.09.18来源:知乎浏览量:118次

  • 数据治理是一种数据管理概念-维基百科

    数据治理是一种数据管理概念-维基百科

    数据治理是一种数据管理概念,涉及使组织能够确保在数据的整个生命周期中存在高数据质量的能力。数据治理的关键重点领域包括可用性,可用性,一致……查看详情

    发布时间:2018.11.12来源:维基百科浏览量:120次

  • 探索科学有效的数据治理之路

    探索科学有效的数据治理之路

    数据是数字经济的基础性战略资源,数据治理能力是国家竞争力的体现。随着移动互联网、物联网、云计算等信息技术的飞速发展,人们的生产和生活方式……查看详情

    发布时间:2020.07.31来源:知乎浏览量:141次

  • 为什么企业架构需要成熟度模型

    为什么企业架构需要成熟度模型

    跑步之前走路。我们已经听过一百万次了,引用了几乎同样多的不同学科。然而,由于时间有限,想要快速完成任务往往是人性。然而,就像我们的第一步……查看详情

    发布时间:2019.02.26来源:亿信华辰浏览量:129次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议