数据治理、共享交换、数据仓库、数据中心的关系

发布时间:2019.08.07来源:CSDN浏览量:217次标签:数据治理

建数据中心离不开数据,以前设计数据库都是从事务性数据库考虑(做的都是业务系统,思维模式太固定了),没有从数据仓库的角度来统管分析。以下是从数据仓库的角度考虑数据中心的建设:

 

政府的数据中心建设基本就包括这几个步骤:
1、数据源:支持不同部门的各类来源数据,包括文件型、数据库型、Http服务型和JMS消息型,可以读取各类数据
2、数据汇聚:这里是通过软件实现原始数据的读取存储,将不同的数据都存储到各自的数据库;因为保证与每个部门不发生扯皮的问题,所以必须保证读取的原始数据是对的,要独立存储不做任何加工,组织就按照同步的部门科室进行存放;所以就对应数据仓库的ODS层
3、数据处理:这里是对汇聚的原始数据进行初步的ETL处理,实现对数据的清洗、加工,补全各类信息(包括编码字典解释等),这个步骤的目的是实现数据的规范化,这里的数据也是落地存储物理库,作为抽取中间库DWD层
4、数据融合:这里是对规范化的原始数据进行融合处理,建立数据之间的关系模型,比如抽取成独立的人口库模型:

 

数据融合主要是按照一个业务领域进行数据建模。
5、数据集市:是对领域模型数据进行汇总统计分析,将统计分析的结果进行存储,简单解释可以理解为一般业务统计的中间表(提高统计效率,将统计成果进行定期存储),当然这里不止这么点,结合现在时髦的大数据分析,也就是将分析结果在集市层存储,为上层应用提供数据源。
6、最后一个是核心的元数据库,这里的元数据核心要存储以上4个库的表及字段元数据,可以实现整个数据处理过程的追溯。

从以上分析,了解共享交换的同学,可能直接就说了上面的数据汇聚、数据处理不就是传统的交换吗?只是换了一个说法;这个说法也没问题,只是这里是从政府业务和数据仓库的角度来说,传统的交换是直接将原始数据文件读取到后进行了ETL处理,形成交换库;这里是从政府安全追责的角度分析,形成2个步骤;所以数据中心的建设是包括数据交换的,只是交换处理的思路在变化。
从数据处理到数据融合,这里是要创建业务模型,按照业务模型进行数据处理,处理的工具一般也是ETL工具;所以共享交换只是强调了软件技术,没有从整体进行规划,它只是真个数据中心建设里的一个技术工具之一。
从数据融合到数据集市,又有几种形态:1、传统的数据统计,2、数据挖掘,3、大数据分析;这几种技术都可以形成数据集市的数据。

数据治理是一个更大的概念:

 

在数据仓库的基础上,更加强调数据的质量与数据安全;现在的数据治理也是叫大数据治理,是大数据建设的基础,毕竟是强调大数据平台里的核心,数据部分。只有数据是可依靠的,才能用来做大数据分析,否则就是无源之水了,谁也不敢相信。
数据质量,核心就是要依靠元数据的管理;来实现整个数据处理过程的跟踪,知道目标数据的源头可以一步步的追溯到数据的提供者。
数据中心则是一个业务上的叫法,包括机制规范、相关软件、数据、处理过程的构建,都是数据中心建设的步骤。数据中心就是通过数据治理形成可以对外统一提供服务的数据。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业如何实现成功的数据治理

    企业如何实现成功的数据治理

    如今,大数据正在社会的各行各业发挥着越来越重要的作用,数据已成为企业的核心资产和重要战略资源,是重要的生产因素。但是数据中存在着各种各样……查看详情

    发布时间:2019.09.09来源:知乎浏览量:156次

  • 数据标准落地成最大痛点!

    数据标准落地成最大痛点!

    目前中小银行数据治理存在数据质量低下、数据治理工具缺乏、重视程度低、专业人才队伍不足等方面难点。……查看详情

    发布时间:2019.12.13来源:CSDN浏览量:169次

  • 数据治理不仅仅是合规问题,它还是一项好业务

    数据治理不仅仅是合规问题,它还是一项好业务

    由于数据的重要性日益增加以及各种数据法规的实施,有效的数据治理策略对业务至关重要。……查看详情

    发布时间:2019.01.17来源:亿信华辰浏览量:148次

  • 数据治理需要转变

    数据治理需要转变

    数据准备和编目工具使用机器学习来协助和建议采购,策划,挖掘和使用数据的方法。数据治理服务在后台智能运行,以自动更正和管理数据使用。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:139次

  • 数据治理和安全

    数据治理和安全

    从组织的角度来看,通过人力资源技术传递的数据需要尽可能保持清洁,一致和可转移。问题?多个系统,手动流程和其他低效率需要清理脏数据,稍后从……查看详情

    发布时间:2018.12.04来源:数据治理浏览量:222次

  • 数据治理与数据质量

    数据治理与数据质量

    单纯从数据层面来看,数据体系包括治理、管理和应用三个部分。治理是负责解决人与人之间的事,管理负责各个职能领域,应用则是价值的实现。不讨论……查看详情

    发布时间:2019.01.03来源:Magic浏览量:116次

  • 大数据是如何被采集及应用的

    大数据是如何被采集及应用的

    尽管“大数据”一词近年来屡遭热捧,但很多人都还不知道什么是大数据,更不知道大数据有什么用。这两年,发现“大数据”这个词出现的越来越频繁了……查看详情

    发布时间:2019.01.11来源:亿信华辰浏览量:128次

  • 读懂工业大数据 这篇文章不得不看

    读懂工业大数据 这篇文章不得不看

    工业大数据是互联网、大数据和工业产业结合的产物,是中国制造2025、工业互联网、工业4.0等国家战略在企业的落脚点。……查看详情

    发布时间:2019.03.27来源:亿信华辰浏览量:129次

  • 四说大数据时代“神话”:从大数据到深数据

    四说大数据时代“神话”:从大数据到深数据

    为国内最大的电商平台之一,苏宁每天要处理数量巨大的数据。为了更快速高效地处理这些数据,苏宁调度平台采取了哪些措施呢?……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:159次

  • 数据治理全域解决方案来了:对症下药 各个击破

    数据治理全域解决方案来了:对症下药 各个击破

    如今数据治理作为数字化转型的基础,成为了数字化变革中的焦点和主战场。不少小伙伴向小亿诉苦,“到底该如何着手做数据治理,能不能先做元数据管……查看详情

    发布时间:2022.01.22来源:小亿浏览量:847次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议