走向人工智能治理的趋势

发布时间:2019.03.13来源:亿信华辰浏览量:87次标签:数据治理


介绍

这是人工智能(AI)驱动的自动化和自动机器的时代。自我改进,自我复制,自主智能机器日益普及和迅速扩大的潜力刺激了网络空间,地球空间和空间(CGS)中人类生态系统的大规模自动化转变。从各国看,越来越多的趋势是越来越多地将复杂的决策过程委托给这些快速发展的人工智能系统。从给予假释到诊断疾病,大学录取到求职面试,管理交易到授予学分,自动驾驶车辆到自主武器,快速发展的人工智能系统越来越多地被各国的个人和实体采用:政府,行业,组织和学术界(NGIOA)。

个人和集体,这些不断发展的人工智能系统的承诺和危险正在引起对人类未来的准确性,公平性,透明度,信任,道德,隐私和安全的严重关注 - 促使人们对人工智能设计,开发和部署。

虽然对任何颠覆性技术,技术转型及其相关变化的恐惧导致政府要求以负责任的方式管理新技术并不是什么新鲜事,但调节人工智能等技术是一种完全不同的挑战。这是因为虽然人工智能可以透明,变革,民主化和易于分配,但它也触及全球经济的每个部门,甚至可以将整个人类未来的安全置于危险之中。毫无疑问,人工智能有可能被滥用,或者它可以以不可预测和有害的方式对待人类 - 以至于整个人类文明都可能处于危险之中。

虽然有一些 - 急需 - 专注于道德,隐私和道德在这场辩论中的作用,但同样重要的安全往往被完全忽视。这给我们带来了一个重要问题: 道德和隐私 准则是否足以 规范人工智能?我们不仅需要让AI透明,负责和公平,还需要关注其安全风险。

安全风险

从各国看,安全风险在人工智能监管辩论中基本上被忽略了。需要了解的是,任何AI系统:无论是机器人,在单台计算机上运行的程序,在联网计算机上运行的程序,还是承载AI的任何其他组件,都会带来安全风险。

那么,这些安全风险和漏洞是什么?它从最初的设计和开发开始。如果初始设计和开发允许或鼓励AI根据其暴露和学习改变其目标,那么这些改变可能会根据初始设计的要求而发生。现在,人工智能有一天会自我改进,也会开始改变自己的代码,并且在某些时候,它也可能会改变硬件,并且可以自我复制。因此,当我们评估所有这些可能的情况时,在某些时候,人类可能会失去对代码或代码中嵌入的任何指令的控制。这给我们带来了一个重要问题: 当人类可能失去对其开发和部署周期的控制时,我们将如何管理AI?

在我们评估多年来源于破坏性和危险技术的安全风险时,每种技术都需要大量的基础设施投资。这使得监管程序变得相当简单和容易:只需跟进大量投资,就可以了解谁在构建什么。然而,信息时代和人工智能等技术从根本上动摇了监管原则和控制的基础。这主要是因为确定人工智能安全风险的人员,地点和内容是不可能的,因为任何人都可以通过合理的当前个人计算机(甚至是智能手机或任何智能设备)和互联网连接,现在可以为人工的发展做出贡献。情报项目/倡议。此外,

此外,如果出现任何问题,可能参与任何人工智能系统组件的设计,开发和部署的各国个人和实体的数量庞大,将难以确定整个系统的责任和问责制。

现在,随着许多人工智能开发项目的开源以及开源机器学习库数量的增加,任何地方的任何人都可以对这些库或代码进行任何修改 - 而且没有办法知道谁做出了这些改变,及时对其产生的安全影响。因此,问题是当个人和实体参与任何来自世界任何地方的AI协作项目时,如何从监管角度识别和主动管理安全风险?

人们普遍认为,为了开发能够对人类造成生存威胁的人工智能系统,它需要更大的计算能力,并且易于跟踪。然而,随着神经形态芯片的发展,计算能力很快将成为一个非问题 - 消除了大量使用计算能力的跟踪能力。

另一个问题是谁在评估安全风险?因为无论人工智能的设计,开发或部署阶段如何,研究人员/设计人员/开发人员是否具备进行广泛安全风险评估所需的专业知识?这给我们带来了一个重要问题: 评估算法或任何AI系统的安全风险需要什么样的专业知识?有人有资格纯粹基于他们在计算机科学,网络安全或硬件方面的背景来评估这些安全风险 - 或者我们需要具有完全不同技能的人吗?


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业数据治理的十个最佳实践

    企业数据治理的十个最佳实践

    任何企业实施数据治理都不是为了治理数据而治理数据,其背后都是管理和业务目标的驱动。企业中普遍存在的数据质量问题有:数据不一致、数据重复、……查看详情

    发布时间:2020.07.02来源:知乎浏览量:290次

  • 数据管理自动化框架的五个好处

    数据管理自动化框架的五个好处

    组织负责管理比以往任何时候都多的数据,使一个强大的自动化框架成为必要。但是自动化框架到底是什么,它又有什么关系呢?……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:142次

  • 数据管理是真的, 真的需要!

    数据管理是真的, 真的需要!

    数据管理是与控制组织定义,生成和使用数据的方式相关的各种学科。这些学科的例子包括数据建模,数据架构,数据质量,元数据管理,数据互操作性等……查看详情

    发布时间:2018.12.21来源:数据管理浏览量:84次

  • 如何保证所基于的数据具有高质量?

    如何保证所基于的数据具有高质量?

    基于数据决策的前提是数据可靠且相关,数据必须是“真实可信的”,否则“输出将是误导和无效的”。但是学校所收集的数据可能不完全,或者更新不及……查看详情

    发布时间:2020.10.31来源:知乎浏览量:113次

  • 大型传统企业如何利用数据管理系统把握好业务和数据的关系,逐步实现智能化转型?

    大型传统企业如何利用数据管理系统把握好业务和数据的关系,逐步实现智能化转型?

    关于“数据治理”的定义各大研究学派给出的都概念不尽相同,但看了这么多不同的说法小亿翻译成人话,其实就是要搞清楚:数据治理治什么?谁来治?……查看详情

    发布时间:2020.08.31来源:亿信华辰浏览量:94次

  • 数据治理能力正在成为互联网+时代城市竞争新优势

    数据治理能力正在成为互联网+时代城市竞争新优势

    新型智慧城市的四个新视角解读 城市服务要以人为中心,但是城市的服务不但以人为中心,还是要做到数据,由于数据为核心,没有好的数据,就没有……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:119次

  • 做好数据标准管理对企业来说有什么意义?

    做好数据标准管理对企业来说有什么意义?

    数据标准是数据全生命周期质量控制的机制与制度保障,贯穿数据从采集到存储、治理和分析应用的全过程,只有建立一套完备的标准体系,数据标准化之……查看详情

    发布时间:2020.05.08来源:知乎浏览量:88次

  • 2025年大数据分析发展的预测

    2025年大数据分析发展的预测

    全球每天的互联网搜索、点击、分享、喜欢和刷卡都会产生大约2 5艾字节的数据。这仅仅是由于物联网推动的。IDC公司预测,到2025年数据量……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:102次

  • 为什么您的主数据管理需要数据治理

    为什么您的主数据管理需要数据治理

    近年来,各组织越来越意识到他们的数据及其在最关键业务功能的成功或失败中所起的作用。这种思维方式的转变以及云技术的发展已经形成了技术预算变……查看详情

    发布时间:2018.12.25来源:数据治理浏览量:112次

  • 企业数据治理的坑你遇到过哪些?

    企业数据治理的坑你遇到过哪些?

    在这些年的数据治理实践当中有成功的经验,当然也经历过很多失败的教训,有些教训反反复复的出现…笔者一直在思考怎么避免这些问题,所以今天就跟……查看详情

    发布时间:2019.09.12来源:知乎浏览量:111次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议