走向人工智能治理的趋势

发布时间:2019.03.13来源:亿信华辰浏览量:118次标签:数据治理


介绍

这是人工智能(AI)驱动的自动化和自动机器的时代。自我改进,自我复制,自主智能机器日益普及和迅速扩大的潜力刺激了网络空间,地球空间和空间(CGS)中人类生态系统的大规模自动化转变。从各国看,越来越多的趋势是越来越多地将复杂的决策过程委托给这些快速发展的人工智能系统。从给予假释到诊断疾病,大学录取到求职面试,管理交易到授予学分,自动驾驶车辆到自主武器,快速发展的人工智能系统越来越多地被各国的个人和实体采用:政府,行业,组织和学术界(NGIOA)。

个人和集体,这些不断发展的人工智能系统的承诺和危险正在引起对人类未来的准确性,公平性,透明度,信任,道德,隐私和安全的严重关注 - 促使人们对人工智能设计,开发和部署。

虽然对任何颠覆性技术,技术转型及其相关变化的恐惧导致政府要求以负责任的方式管理新技术并不是什么新鲜事,但调节人工智能等技术是一种完全不同的挑战。这是因为虽然人工智能可以透明,变革,民主化和易于分配,但它也触及全球经济的每个部门,甚至可以将整个人类未来的安全置于危险之中。毫无疑问,人工智能有可能被滥用,或者它可以以不可预测和有害的方式对待人类 - 以至于整个人类文明都可能处于危险之中。

虽然有一些 - 急需 - 专注于道德,隐私和道德在这场辩论中的作用,但同样重要的安全往往被完全忽视。这给我们带来了一个重要问题: 道德和隐私 准则是否足以 规范人工智能?我们不仅需要让AI透明,负责和公平,还需要关注其安全风险。

安全风险

从各国看,安全风险在人工智能监管辩论中基本上被忽略了。需要了解的是,任何AI系统:无论是机器人,在单台计算机上运行的程序,在联网计算机上运行的程序,还是承载AI的任何其他组件,都会带来安全风险。

那么,这些安全风险和漏洞是什么?它从最初的设计和开发开始。如果初始设计和开发允许或鼓励AI根据其暴露和学习改变其目标,那么这些改变可能会根据初始设计的要求而发生。现在,人工智能有一天会自我改进,也会开始改变自己的代码,并且在某些时候,它也可能会改变硬件,并且可以自我复制。因此,当我们评估所有这些可能的情况时,在某些时候,人类可能会失去对代码或代码中嵌入的任何指令的控制。这给我们带来了一个重要问题: 当人类可能失去对其开发和部署周期的控制时,我们将如何管理AI?

在我们评估多年来源于破坏性和危险技术的安全风险时,每种技术都需要大量的基础设施投资。这使得监管程序变得相当简单和容易:只需跟进大量投资,就可以了解谁在构建什么。然而,信息时代和人工智能等技术从根本上动摇了监管原则和控制的基础。这主要是因为确定人工智能安全风险的人员,地点和内容是不可能的,因为任何人都可以通过合理的当前个人计算机(甚至是智能手机或任何智能设备)和互联网连接,现在可以为人工的发展做出贡献。情报项目/倡议。此外,

此外,如果出现任何问题,可能参与任何人工智能系统组件的设计,开发和部署的各国个人和实体的数量庞大,将难以确定整个系统的责任和问责制。

现在,随着许多人工智能开发项目的开源以及开源机器学习库数量的增加,任何地方的任何人都可以对这些库或代码进行任何修改 - 而且没有办法知道谁做出了这些改变,及时对其产生的安全影响。因此,问题是当个人和实体参与任何来自世界任何地方的AI协作项目时,如何从监管角度识别和主动管理安全风险?

人们普遍认为,为了开发能够对人类造成生存威胁的人工智能系统,它需要更大的计算能力,并且易于跟踪。然而,随着神经形态芯片的发展,计算能力很快将成为一个非问题 - 消除了大量使用计算能力的跟踪能力。

另一个问题是谁在评估安全风险?因为无论人工智能的设计,开发或部署阶段如何,研究人员/设计人员/开发人员是否具备进行广泛安全风险评估所需的专业知识?这给我们带来了一个重要问题: 评估算法或任何AI系统的安全风险需要什么样的专业知识?有人有资格纯粹基于他们在计算机科学,网络安全或硬件方面的背景来评估这些安全风险 - 或者我们需要具有完全不同技能的人吗?


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据安全问题引担忧 如何给用户一颗“定心丸”?

    数据安全问题引担忧 如何给用户一颗“定心丸”?

    信息化发展已经由IT(Information Technology)时代进入DT(Data Technology)时代,“数据安全与个人……查看详情

    发布时间:2019.02.12来源:亿信华辰浏览量:132次

  • 企业如何开展数据治理项目

    企业如何开展数据治理项目

    从大的阶段来看,数据治理主要分为存量数据“由乱到治”的阶段,以及增量数据严格按照规章制度实施确保“行不逾矩”的运营阶段。在“由乱到治”的……查看详情

    发布时间:2020.06.30来源:知乎浏览量:115次

  • 数据湖中的数据管理与治理

    数据湖中的数据管理与治理

    当您转换到数据湖时,选择完全集成的数据湖泊管理平台将使您对数据充满信心,并对其进行扩展以包含越来越多的用户和有利于业务的用例。毕竟,这就……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:185次

  • 大型企业数据治理的现状和解决方案

    大型企业数据治理的现状和解决方案

    在大数据时代,数据治理是所有的拥有大量数据的公司的巨大的挑战。没有数据,企业缺乏用于做决策的数据的支持。可是有了越来越多的数据,很多情况……查看详情

    发布时间:2020.03.24来源:知乎浏览量:134次

  • 数据治理的十五个最佳实践

    数据治理的十五个最佳实践

    数据治理研究所(DGI)认为,它是一套切实可行的框架,帮助任何组织的各种数据利益相关方识别并满足其信息需求。DGI认为,企业不仅需要管理……查看详情

    发布时间:2020.07.31来源:知乎浏览量:156次

  • 数据治理成功的预测指标

    数据治理成功的预测指标

    简而言之,数据治理项目在组织内经常遇到的挑战通常与高级管理层和业务中的数据文化状态密切相关。从这两个利益相关方团体获得支持可以显着提高数……查看详情

    发布时间:2019.03.22来源:亿信华辰浏览量:173次

  • 数据治理和数据管理不可互换

    数据治理和数据管理不可互换

    从什么时候开始数据管理和数据治理可以互换? 这个问题让我感到困惑和沮丧。追求数据管理供应商与业务利益相关者建立联系,因为业务部门在决策……查看详情

    发布时间:2018.11.20来源:Michele Goetz浏览量:137次

  • 浅谈数据质量管理

    浅谈数据质量管理

    随着互联网及数字化技术的飞速发展,我们生活在一个数字化转型的时代,各种数字化正在实实在在的改变着企业的日常运营,以及我们每个人的衣食住行……查看详情

    发布时间:2019.07.26来源:知乎浏览量:175次

  • 一文讲透数据治理核心指标

    一文讲透数据治理核心指标

    股份制改革对我国银行业来说只是一个开始,企业在风险管理、创造价值等方面还有很长的路要走。风险管理要求提供精准的数据模型、创造价值要求充分……查看详情

    发布时间:2020.06.19来源:CSDN浏览量:146次

  • 世界各地的组织如何处理数据治理

    世界各地的组织如何处理数据治理

    在2019年G20大阪峰会召开的同时,我很幸运能够在整个六月的整个月里在东京办公室工作。这是一个有趣的事件,引起我注意的主要议题之一是“……查看详情

    发布时间:2019.07.11来源:知乎浏览量:144次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议