走向人工智能治理的趋势

发布时间:2019.03.13来源:亿信华辰浏览量:127次标签:数据治理


介绍

这是人工智能(AI)驱动的自动化和自动机器的时代。自我改进,自我复制,自主智能机器日益普及和迅速扩大的潜力刺激了网络空间,地球空间和空间(CGS)中人类生态系统的大规模自动化转变。从各国看,越来越多的趋势是越来越多地将复杂的决策过程委托给这些快速发展的人工智能系统。从给予假释到诊断疾病,大学录取到求职面试,管理交易到授予学分,自动驾驶车辆到自主武器,快速发展的人工智能系统越来越多地被各国的个人和实体采用:政府,行业,组织和学术界(NGIOA)。

个人和集体,这些不断发展的人工智能系统的承诺和危险正在引起对人类未来的准确性,公平性,透明度,信任,道德,隐私和安全的严重关注 - 促使人们对人工智能设计,开发和部署。

虽然对任何颠覆性技术,技术转型及其相关变化的恐惧导致政府要求以负责任的方式管理新技术并不是什么新鲜事,但调节人工智能等技术是一种完全不同的挑战。这是因为虽然人工智能可以透明,变革,民主化和易于分配,但它也触及全球经济的每个部门,甚至可以将整个人类未来的安全置于危险之中。毫无疑问,人工智能有可能被滥用,或者它可以以不可预测和有害的方式对待人类 - 以至于整个人类文明都可能处于危险之中。

虽然有一些 - 急需 - 专注于道德,隐私和道德在这场辩论中的作用,但同样重要的安全往往被完全忽视。这给我们带来了一个重要问题: 道德和隐私 准则是否足以 规范人工智能?我们不仅需要让AI透明,负责和公平,还需要关注其安全风险。

安全风险

从各国看,安全风险在人工智能监管辩论中基本上被忽略了。需要了解的是,任何AI系统:无论是机器人,在单台计算机上运行的程序,在联网计算机上运行的程序,还是承载AI的任何其他组件,都会带来安全风险。

那么,这些安全风险和漏洞是什么?它从最初的设计和开发开始。如果初始设计和开发允许或鼓励AI根据其暴露和学习改变其目标,那么这些改变可能会根据初始设计的要求而发生。现在,人工智能有一天会自我改进,也会开始改变自己的代码,并且在某些时候,它也可能会改变硬件,并且可以自我复制。因此,当我们评估所有这些可能的情况时,在某些时候,人类可能会失去对代码或代码中嵌入的任何指令的控制。这给我们带来了一个重要问题: 当人类可能失去对其开发和部署周期的控制时,我们将如何管理AI?

在我们评估多年来源于破坏性和危险技术的安全风险时,每种技术都需要大量的基础设施投资。这使得监管程序变得相当简单和容易:只需跟进大量投资,就可以了解谁在构建什么。然而,信息时代和人工智能等技术从根本上动摇了监管原则和控制的基础。这主要是因为确定人工智能安全风险的人员,地点和内容是不可能的,因为任何人都可以通过合理的当前个人计算机(甚至是智能手机或任何智能设备)和互联网连接,现在可以为人工的发展做出贡献。情报项目/倡议。此外,

此外,如果出现任何问题,可能参与任何人工智能系统组件的设计,开发和部署的各国个人和实体的数量庞大,将难以确定整个系统的责任和问责制。

现在,随着许多人工智能开发项目的开源以及开源机器学习库数量的增加,任何地方的任何人都可以对这些库或代码进行任何修改 - 而且没有办法知道谁做出了这些改变,及时对其产生的安全影响。因此,问题是当个人和实体参与任何来自世界任何地方的AI协作项目时,如何从监管角度识别和主动管理安全风险?

人们普遍认为,为了开发能够对人类造成生存威胁的人工智能系统,它需要更大的计算能力,并且易于跟踪。然而,随着神经形态芯片的发展,计算能力很快将成为一个非问题 - 消除了大量使用计算能力的跟踪能力。

另一个问题是谁在评估安全风险?因为无论人工智能的设计,开发或部署阶段如何,研究人员/设计人员/开发人员是否具备进行广泛安全风险评估所需的专业知识?这给我们带来了一个重要问题: 评估算法或任何AI系统的安全风险需要什么样的专业知识?有人有资格纯粹基于他们在计算机科学,网络安全或硬件方面的背景来评估这些安全风险 - 或者我们需要具有完全不同技能的人吗?


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 如何成功实现一个数据治理项目,大神详细拆解实施要点

    如何成功实现一个数据治理项目,大神详细拆解实施要点

    数据作为新型生产要素,只有流动、分享、加工处理才能创造价值。如今数据治理成为数字经济必经之路,怎么实现一个数据治理项目成为大家最关心的问……查看详情

    发布时间:2021.02.02来源:知乎浏览量:256次

  • 数据仓库的定义,它有什么作用?

    数据仓库的定义,它有什么作用?

    最简单的数据仓库是用于存储和报告数据的系统。数据通常源自多个系统,然后将其移入数据仓库以进行长期存储和分析。该存储的结构使得组织内的许多……查看详情

    发布时间:2018.12.20来源:数据治理浏览量:147次

  • 如何搭建企业级主数据管理平台

    如何搭建企业级主数据管理平台

    企业应用系统的构建多是以项目为中心,缺乏自上而下的规划。这样势必会导致企业信息孤岛现象越来越严重。主数据作为企业应用系统中最重要的业务单……查看详情

    发布时间:2022.03.17来源:小亿浏览量:253次

  • 如何选择正确的数据治理工具

    如何选择正确的数据治理工具

    通过选择和利用具有嵌入式质量控制的智能和工作流驱动的自助数据治理工具,您可以实施可扩展的信任系统。让我们探索一些方法来为您的团队找到合适……查看详情

    发布时间:2021.06.16来源:亿信数据治理知识库浏览量:125次

  • 什么是主数据?

    什么是主数据?

    企业主数据(Master Data)是用来描述企业核心业务实体的数据,比如客户、合作伙伴、员工、产品、物料单、账户等;它是具有高业务价值……查看详情

    发布时间:2020.04.29来源:知乎浏览量:187次

  • 数据治理之道是什么,要怎么做?

    数据治理之道是什么,要怎么做?

    数据治理需要体系建设:为发挥数据价值需要满足三个要素:合理的平台架构、完善的治理服务、体系化的运营手段。……查看详情

    发布时间:2021.05.14来源:亿信数据治理知识库浏览量:148次

  • 利用数据治理重新定义数据架构

    利用数据治理重新定义数据架构

    数据和数据管理的重要性,价值和责任正在迅速增加。……查看详情

    发布时间:2019.01.16来源:亿信华辰浏览量:188次

  • 数据虚拟化 实现大数据的有效管理

    数据虚拟化 实现大数据的有效管理

    关于在石油天然气的钻探和出产过程中所发生的数据的价值,并没有太多的争议。尽管数字化油田运动的最初意图,是将与设备的监测和维护相关的使命完……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:151次

  • 完善数据治理的制度设计

    完善数据治理的制度设计

    作为最具时代特征、最活跃的生产要素和价值创造来源,“数据”首次出现在《决定》的文本之中。这既反映了经济社会数字化转型不断加快的特征事实,……查看详情

    发布时间:2020.10.31来源:知乎浏览量:129次

  • 大数据时代 这样炼钢——亿信华辰

    大数据时代 这样炼钢——亿信华辰

    铁流滚滚,四溅迸射出绚丽的火花。经过1个多小时的高温淬炼,高达1500摄氏度的铁水从出铁口喷涌而出,像一条火龙沿着沟槽蜿蜒流动。……查看详情

    发布时间:2019.02.12来源:亿信华辰浏览量:180次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议