数据治理的未来:平衡数据治理和数据管理

发布时间:2019.02.21来源:亿信华辰浏览量:124次标签:数据治理

在为所有Citizen Bank的企业数据创建和实施数据治理策略时,这个问题似乎无法克服。凭借1514亿美元的资产以及有关500多万个人,机构和公司(主要是东北地区)的信息,这是一个广泛的投资组合。Cottone评论说,“当使用数据治理这个词时,它会自动发挥诸如'控制','安全','保护'和'合规性'等概念。”然后是“使用”,“功能”和“概念”这样的概念。创新',“似乎将整体数据管理与数据治理目标相对立。

作为公民银行的CDO,Cottone的任务是根据银行标语管理数据资产:“我们是帮助公民发挥潜力的公民。”这是一项艰巨的任务,要求Cottone利用其在金融领域其他16年的经验行业,包括为数据采集,使用和管理活动提供愿景,战略和政策指导。此外,Cottone承认成功意味着“通过降低风险来提高运营效率,保持收入增长并激发公司内部真正的新见解和创新”。作为第一步,Cottone拥有并负责公民的数据管理政策,而不仅仅是数据政策。这需要将数据管理和数据治理结合在一起。

平衡数据管理与数据治理

她说,她的兴趣在于数据管理,使人们能够使用正确的参数做出“正确的事情。”她之前的工作背景要求她在整个组织中领导客户体验计划的实施。在那段时间内,她参加了几个数据治理计划。Cottone指出:

“他们每个人都在努力,因为这是一个非常沉重的委员会。为治理而治理。它是关于告诉人们他们能做什么,不能做什么,但却没有帮助人们以正确的方式完成任务。人们需要有权力来解决已发现的问题或将其带到某个地方,以便以适当的方式为公司确定优先顺序“

在这里,Cottone认为,数据治理,设置策略和程序以确保事情以适当的方式完成,以及数据管理,以正确的方式做正确的事情之间的平衡行为。她承认“在两者之间寻找合适的位置”所面临的挑战。她认为她的“推动使用和支持使我们处于治理视角的风险之中。”但她相信“人们会在你做正确的事情时获得正确的工具,把正确的护栏放好。“为了创造这种平衡,Cottone描述了技术,企业数据和业务之间的三方合作关系。

参与数据管理

Cottone将矩阵描述为“联合模型”,其中所有技术都是集中的。位于Citizens Bank的技术扮演着“双重角色”.Cottone表示,技术在与业务保持一致的同时,在数据基础架构上进行协作。作为回报,业务为获取任何现有项目的数据提供了需求和资源。企业数据构建了银行所需的数据基础架构。Enterprise Data可帮助技术构建此数据基础架构,并确保业务可利用数据环境来支持业务项目。数据管理的参与与数据治理模型一起使用。

双向数据治理模型

她说,公民银行的数据治理从上到下自下而上。数据粘合了这种双向架构,包括两种不同类型的数据管理员,数据受托人委员会,项目指导委员会以及最终的执行委员会数据治理模型。

Cottone强调Data Stewardship是数据治理的“数据基础”,它依赖于两种不同类型的数据管理员:Source Stewards和Customer Stewards。两种类型的管理员都会提出问题,参与技术实施,并与业务部门数据受托人合作。“他们得到了他们的手,并帮助作为一个团体做出决定,”Cottone说。Cottone说,所有数据管理员都会帮助“优先处理问题并与他们的组织进行沟通”。她解释说,这些人“实际上得到了他们的手,”并“定期花时间在数据相关的主题上”。

来源和客户管理员的重点不同。她说,Source Stewards是一个约60人的小组,负责处理大约75个信息源“流入新建的网关”。他们专注于“客户会计交易,以帮助我们的业务合作伙伴。”

顾客管家,一组15人,“更多地考虑客户应该考虑他们所处的业务,”她指出。这些人基于对这些用户拥有的所有产品的访问权,从整体上概念化客户群。此类客户信息存储在客户主数据中。客户管理员与客户进行大量数据质量工作。但是,如上段所述,客户和来源管理员参与相同的流程。

数据受托人让数据管理员参与并协助两个团队的持续管理。数据受托人向计划指导委员会(PSC)传达信息,这将有助于PSC“审查财务和项目状态。”PSC预算用于整个数据计划。跨越业务线并且无法解决的问题流向CEO和他的直接报告,他们充当这些问题的调解者。

Cottone描述了自上而下的管理人员确定了引入Data Lake的资源及其优先级。PSC有助于引入这些来源以及订单。由于“从客户的角度来看两种不同的竞争观点,他们还确定有人帮助决定客户主人的挑战。”随着数据进入Data Lake,指导委员会优先考虑许多问题,“尤其是当受托人在那个街区外面,“科托内说。PSC和数据受托人将这些目标传达给数据管家,完成了这种双向治理模型。数据治理模型与其企业数据参与模型一起使用,包括人员,流程和技术。

使用数据来粘合数据管理和数据治理

数据管理和数据治理的背景下,“数据是将人员,流程和技术结合在一起的粘合剂”,她强调说。这“使公民的员工能够完成他们的工作,并最终使他们更容易增加收入,降低成本并改善客户体验。”

数据构成了所有这一切的中心,也是人们搜索和编织信息的能力。“数据质量是其中的重要组成部分,”Cottone在数据管理和数据治理方面表示。“关于数据质量流程的持续参与吸收了数据管理。”数据质量通过共同填充,分析,提出改进,进行更改和监控数据,以推动所需业务成果的方式帮助连接数据管理员。数据质量仪表板针对75个系统中的每个系统的关键元素,帮助Data Stewards“以优先级方式解决问题。”通过数据,将人员,流程和技术结合在一起,实现了真正的数据治理。

作为粘合剂的数据赋予数据治理权力。对于Cottone,这意味着:

“寻找,理解和信任数据。成为CDO意味着对人,流程和技术充满热情。数据治理不仅仅是数据,而是将数据交到每个数据公民手中,即前线人员正在投入工作。“

从这个口头禅,Ursula Cottone平衡了数据治理与数据管理,实现了公民的最初使命,“通过快速访问高质量数据,为客户提供信心,支持数据驱动的决策,从而为业务合作伙伴创造竞争优势。”

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据安全治理所遵循的三大原则

    数据安全治理所遵循的三大原则

    搞清楚数据安全要解决哪些问题、大数据时代下解决这些问题所面临的主要挑战,就可以梳理数据安全治理的核心思路了。简单说,数据安全治理可以遵循……查看详情

    发布时间:2019.05.23来源:知乎浏览量:72次

  • 理论之企业数据挖掘成功之道

    理论之企业数据挖掘成功之道

    面对现在海量的、不完整的、模棱两可的数据,运用数据挖掘算法对数据进行查找,找出人们所不知道的、有实用价值的信息,这一过程就是数据挖据。随……查看详情

    发布时间:2019.05.23来源:知乎浏览量:101次

  • 医疗保健数据治理:预测是什么?

    医疗保健数据治理:预测是什么?

    医疗保健数据治理已经远超过应用程序只是满足合规性标准。医疗费用始终是讨论的主题,健康保险状况和“平价医疗法案”(ACA)等政策也是如此。……查看详情

    发布时间:2018.12.03来源:迈克尔帕斯托雷浏览量:118次

  • 10个顶级元数据管理工具

    10个顶级元数据管理工具

    元数据管理解决方案监控整个生命周期中的数据,包括数据分析,数据价值,数据治理以及风险和合规性。……查看详情

    发布时间:2019.07.11来源:头条浏览量:309次

  • 谷歌首席决策科学家:30篇文章通关数据科学与人工智能

    谷歌首席决策科学家:30篇文章通关数据科学与人工智能

    谷歌首席决策科学家(Chief Decision Scientis)凯西柯兹科夫(Cassie Kozyrkov)在2018年非常高产,……查看详情

    发布时间:2019.01.24来源:亿信华辰浏览量:82次

  • 数据管理自动化框架的五个好处

    数据管理自动化框架的五个好处

    组织负责管理比以往任何时候都多的数据,使一个强大的自动化框架成为必要。但是自动化框架到底是什么,它又有什么关系呢?……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:132次

  • 正确的数据文化是数据治理成功的预测指标

    正确的数据文化是数据治理成功的预测指标

    获得数据治理计划的业务和领导支持 - 以及在该支持下建立数据文化 - 仍然是许多组织面临的重大挑战。然而,根据一项新的调查,获得这种支持……查看详情

    发布时间:2019.02.25来源:亿信华辰浏览量:114次

  • 数据治理管理干货 | 数据质量管理的方法

    数据治理管理干货 | 数据质量管理的方法

    原始数据通常包含错误,如果不做数据质量管理,可能会导致错误的结果。数据质量管理是数据治理中获得正确上下文和结论的基本步骤。……查看详情

    发布时间:2021.06.22来源:亿信数据治理知识库浏览量:135次

  • 企业数据质量管理的核心要素和技术原则

    企业数据质量管理的核心要素和技术原则

    “十三五”,规划提出了国家的大数据战略,指出了企业实现以数字化驱动业务发展,实现数据开放共享,创新业务发展的新思路。现阶段大中型企业已经……查看详情

    发布时间:2020.01.09来源:CSDN浏览量:182次

  • 元数据:数据治理的燃料

    元数据:数据治理的燃料

    企业渴望从可提供竞争优势的数据中获取洞察力。实现这一目标的最常见障碍是数据质量差。如果输入到预测算法的数据是“脏的”(具有丢失或无效的值……查看详情

    发布时间:2019.08.02来源:知乎浏览量:116次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议