数据治理的六大优势

发布时间:2019.01.26来源:亿信华辰浏览量:0次标签:数据治理


重要的是,我们认识到数据治理(DG)的优势超出了通用数据保护法规(GDPR)的要求。

数据治理对于GDPR是强制性的,因此在2018年5月截止日期之前实施数据的动机是明确的。然而,时间轴的压力也可以被视为一把双刃剑。

一方面,引入授权使许多企业忽视的实践成为焦点。一个第一个SAN Francisco Partners公司(FSFP)的研究发现,只有47.9%的受访者有一个适当的DG程序。

不过,我们开始看到这种转变。FSFP的研究还发现,29%的企业处于DG推出的早期阶段,另外19%的企业处于研究和规划阶段。

剑的另一个优势在于,在快速逼近的GDPR截止日期的鼓舞下,这种摆动的大部分是反动的。

通过在时间线上引入数据治理的授权,许多企业将倾向于仅仅为了达到合规标准而做到最低限度。

不幸的是,这意味着数据治理的以下好处将留在桌面上。

更好的决策

数据治理的主要好处之一是更好的决策制定。这既适用于决策过程,也适用于决策本身。

管理良好的数据更容易被发现,使相关方更容易找到有用的见解。这也意味着决策将基于正确的数据,确保更高的准确性和信任。

运营效率

在数据驱动的业务时代,数据非常有价值。因此,它应该被视为资产。

例如,考虑制造业务的实物资产。运营良好的制造企业确保其生产线机器定期检查,维护和升级,因此生产线运行平稳,停机时间有限。

相同的方法应适用于数据。

改进数据理解和沿袭

数据治理是关于了解数据的内容和存储位置。如果实施得当,数据治理可提供所有数据资产的综合视图。

它还提供更大的问责制。通过分配权限,可以更轻松地确定谁负责特定数据。

更高的数据质量

由于数据治理有助于发现,具有有效数据治理计划的企业也可以从提高的数据质量中受益。虽然技术上是两个单独的举措,但它们的一些目标重叠。

这些包括但不限于数据的标准化及其一致性。明确区分这两个计划的一种方法是考虑每个领域提出问题

数据质量想知道数据的有用性和完整性,而数据治理则想知道数据的位置以及由谁负责。

数据治理可以提高数据质量,因为回答后者可以更容易地解决前者问题。

法规遵从性

如引言中所述,如果您尚未采用数据治理计划,那么遵从性可能是最佳理由。高额罚款的上限为2000万欧元或4%或全球年营业额 - 以较大者为准 - 都无济于事。

也就是说,GDPR罚款只是激励你应该已经热衷于做的事情。没有享受上述好处的数据驱动型企业从根本上扼杀了自己的业绩。

甚至可以说,要真正实现数据驱动,数据治理是必须的。

增加收入

事实上,推动收入应该在DG福利清单上更高。然而,它位于这里是因为上述益处累积地影响它。

上面提到的数据治理的所有好处可以帮助企业更加确定地做出更好,更快的决策。

这意味着可以实现成本较低的错误 - 以错误启动甚至数据泄露的形式。这意味着您通过管理风险花费更少的资金,并关闭企业安全性中最脆弱的漏洞,而不是追溯更多的资金,处理公关和财务危机。

你需要做什么

考虑到这些优势及其累积的实际价值,数据驱动的组织无法承担将数据治理留给IT的能力。这就是Data Governance 1.0最终失败的原因。

但即使是现在,FSFP研究中有23%的企业表示信息技术可以引领他们的数据治理工作。

在当前的气候下,这种思维方式本质上是有缺陷的。我们已经达到了一个新的商业时代,其中数据被认为比石油更有价值。然而,许多企业仍然不愿意像对待实物资产一样对待数据。

这需要改变。如果数据确实很有价值,我们需要将数据治理视为一项战略举措

Data Governance 2.0涉及整个企业,包括部门主管和C级管理人员,他们将从整个流程中获得的数据洞察中受益。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理对医疗保健组织来说往往是个谜

    数据治理对医疗保健组织来说往往是个谜

    数据治理对医疗保健组织来说往往是个谜。“它是什么?我该怎么做?我在哪里可以买到它?“它引起了一些想法。 数据治理是一组流程,可确保在整……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:2次

  • 数据治理股票检查:使用数据治理来计算您的数据资产

    数据治理股票检查:使用数据治理来计算您的数据资产

    为了遵守法规(例如,GDPR)并确保业务绩效达到峰值,组织通常会聘请顾问来帮助评估其数据资产。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:9次

  • 数据治理和当今的新数据目标

    数据治理和当今的新数据目标

    尽管实施全面的治理计划似乎令人生畏,但拥有有效数据治理策略和MDM解决方案的公司不断寻找新方法从数据中提取价值。……查看详情

    发布时间:2019.03.25来源:亿信华辰浏览量:2次

  • 数据质量管理趋势

    数据质量管理趋势

    进一步信息又可分为物理信息和语义信息两类,其中物理层面的信息反映基础的数据结构;语义信息属于进阶有含义的语义数据结构,反映人类的视角。……查看详情

    发布时间:2019.11.15来源:知乎浏览量:3次

  • 数据资产管理的发展趋势

    数据资产管理的发展趋势

    随着数据资产管理生态系统的不断发展,现有的实践体系也在迅速发展,可以从数据对象、数据采集、处理架构、组织职能、管理手段和应用范围六个方面……查看详情

    发布时间:2020.09.11来源:知乎浏览量:1次

  • 数据治理新挑战:数据要素大规模流动

    数据治理新挑战:数据要素大规模流动

    “我们谈论大数据的时候在谈什么?”“数据生产要素、数据治理、隐私计算……这些都是关键词。”7月24日下午,2020年中国互联网大会“数据……查看详情

    发布时间:2020.07.31来源:知乎浏览量:2次

  • 大数据时代如何做好数据治理

    大数据时代如何做好数据治理

    企业在建制大数据平台的同时,对进入数据湖的数据进行梳理,并按照数据资产目录的形式对外发布。在发布数据资产之后,则对进出数据湖……查看详情

    发布时间:2018.12.10来源:数据治理浏览量:2次

  • 数据治理和流分析的关系

    数据治理和流分析的关系

    借助流分析,可以通过智能数据模型和算法快速处理传入数据,以致在许多情况下,流数据没有机会被存储。与传统的分析过程相比,这是一个重要的变化……查看详情

    发布时间:2021.04.23来源:亿信数据治理知识库浏览量:3次

  • 为什么你应该有一个数据治理策略

    为什么你应该有一个数据治理策略

    有效的数据治理也是一个持续的过程。政策定义,审查,调整和审计以及合规审查和质量控制都会作为数据治理生命周期经常受到影响或重复。因此,数据……查看详情

    发布时间:2019.03.08来源:亿信华辰浏览量:4次

  • 未来我国大数据发展还有哪些机遇和挑战?

    未来我国大数据发展还有哪些机遇和挑战?

    随着信息技术和人类生产生活交汇融合,全球数据呈现爆发增长、海量集聚的特点。无论是国家、企业还是社会公众,都越来越认识到数据的价值。……查看详情

    发布时间:2019.03.18来源:亿信华辰浏览量:4次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议