数据治理,帮你厘清企业的数据资产

发布时间:2019.01.18来源:亿信华辰浏览量:130次标签:数据治理


数据治理并不是一个新概念,最近因为5月份在欧盟推行的《通用数据保护条例》(General Data Protection Regulation,简称GDPR)炒得火热。因为根据欧盟的规定,企业如果违反GDPR,可能面临高达营业额4%的罚金。“2018 Informatica数据治理高峰论坛”正是在这个背景下召开的,其迎来了业界广泛关注也在情理之中。

数据治理助力数字化转型

今天,不少企业在进行数字化转型,它与数据治理也有密切的联系。因为数字化转型的前提就是数字化,也就是要有数据,有了数据就需要数据治理,数据量越大、类型越复杂就越需要。

“数据已经显示其划时代的颠覆力量,数据驱动数字化转型的时代已经来临。“Informatica大中国区总经理王晨杰在演讲中表示。

王晨杰将数据的利用分为三个阶段,第一个阶段数据只用于特定业务应用,即Data 1.0;第二阶段,数据用于支持企业范围内的全业务流程,即Data 2.0;如今是第三个阶段,数据驱动数字化转型的Data 3.0时代。

Informatica全球数据治理高级总监Patrick Dewald在演讲表示,数据是企业数字化转型的基础,在此基础上才能支持企业的新的业务模式、新流程、新模式、新的基础架构,而这个过程需要数据治理的介入。

“数据治理让企业可以对自己拥有的数据有一个全面的了解,比如有哪些数据、数据质量如何、数据之间是什么关系、分别在哪个业务流程中涉及等。它能为数据的合规和有效使用奠定一个非常好的基础。“Patrick Dewald说。

Patrick Dewald举例说,有一个大型企业拥有25000张数据表,数据在不同表之间构成了复杂的关系,不借助数据治理工具的帮助,要弄清楚这个关系几乎不可能。

据悉,当前企业选用数据治理解决方案的动因主要有两个,一个法律法规的规定,也就是合规;另一个是企业的内省,企业需要全面了解企业自己的数据资产。

采访中Patrick Dewald强调说,近期因为欧盟GDPR让合规成为很多客户的首选需求。未来后一需求会更多。而就长远来看,随着更多类似GDPR法规的推出、企业对数据的日益重视、更多人参与到数据的使用、以及不断增长的数据量和数据类型都会让数据治理整体市场快速增长。

向智能数据治理演进

经过多年的技术演进,与几年前相比,如今数据治理技术发生了很多变化,并因此有了下一代数据治理(或者新一代数据治理)的说法。

Patrick Dewald解释说,过去的数据治理有几个典型特征,其一是自上而下推动,上面先制定政策,然后推动、监测和管控政策标准的执行 ;第二是只关注数据,所有的工作都围绕数据,比如会出台各种数据定义、数据政策、数据规则、数据委员会;第三,治理是否成功主要看是否有足够多的规定,这会导致更多的治理政策、规则、标准、委员会等推出。

“传统的数据治理的主要问题是关注于数据本身,而没有首先关注业务价值。数据只有创造业务价值对于企业而言才有意义。“Patrick Dewald表示,这也是新一代数据治理有别于传统数据治理的主要不同。

据悉,新一代数据治理能通过关联政策、技术和运营来实现治理,并促进利益相关方之间的协作;同时,还能收集业务中的知识和上下文,并通过在合适的业务场景中监测和报告成果,来保证数据治理利益相关方始终拥有对数据的控制权。除此之外,新一代数据治理还进一步降低了使用门槛,产品让更多人使用,同时,还能支持更广泛的协作和联网。

Patrick Dewald将新一代的数据治理称为“智能数据治理”,这是因为其中大量引入了人工智能技术。以Informatica的数据治理解决方案为例。Informatica已经把前沿人工智能技术融入到产品方案中,来帮助企业充分挖掘数据价值、释放数据潜能、深耕数据红利。Informatica近期发布的基于人工智能的自动化智能数据治理方案,通过将Axon数据治理集成到数据质量、企业数据目录和Secure@Source中,以整体、协作的方法将员工、流程和系统流畅融合,为全新的企业数据治理提供强大动力,有效推动业务和IT的相互协作,以及数据治理计划的共同实施,提升数据的可靠性和质量,实现可信数据和受保护数据的可靠交付,进一步提高数据治理效率,促进战略业务计划实施。

针对当下备受关注的“安全合规“需求,Informatica将数据安全作为全局考量,纳入所有产品和方案的设计与落地中,如AXON的数据理解和治理特性,Secure@Source探查和分析敏感数据能力,主数据管理的授权管理和规则制定,以及通过数据脱敏、归档、清洗获得更安全的数据,全面满足数据保密、保护及合规要求。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据管理自动化框架的五个好处

    数据管理自动化框架的五个好处

    组织负责管理比以往任何时候都多的数据,使一个强大的自动化框架成为必要。但是自动化框架到底是什么,它又有什么关系呢?……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:174次

  • 浅析银行业如何做数据治理

    浅析银行业如何做数据治理

    2018年5月,银保监会发布《银行业金融机构数据治理指引》,从数据治理架构、数据管理、数据质量控制、数据价值实现、监督管理等方面规范银行……查看详情

    发布时间:2019.06.14来源:亿信华辰浏览量:178次

  • 2019年需要关注的三个治理趋势

    2019年需要关注的三个治理趋势

    通过精心应用RPA,优先考虑数据质量,并迎合不断变化的劳动力构成,数据专业人员可以有效地指导他们的组织进入数据驱动的未来。……查看详情

    发布时间:2018.12.20来源:亿信华辰浏览量:121次

  • 盘点数据治理的6个价值

    盘点数据治理的6个价值

    ​随着大数据的发展,各行各业都面临越来越庞大且复杂的数据,这些数据如果不能有效管理起来,不但不能成为企业的资产,反而可能成为拖累企业的“……查看详情

    发布时间:2022.06.15来源:互联网浏览量:304次

  • 医疗保健数据治理:预测是什么?

    医疗保健数据治理:预测是什么?

    医疗保健数据治理已经远超过应用程序只是满足合规性标准。医疗费用始终是讨论的主题,健康保险状况和“平价医疗法案”(ACA)等政策也是如此。……查看详情

    发布时间:2018.12.03来源:迈克尔帕斯托雷浏览量:185次

  • 大数据治理需要具备哪些能力和关键技术

    大数据治理需要具备哪些能力和关键技术

    从企业的数据资产管理和提升数据质量等的数据应用上,大数据治理的内容在不断地发展和完善,在其落地实施的过程中面临着巨大的挑战。我们现在通过……查看详情

    发布时间:2019.08.13来源:知乎浏览量:150次

  • 数据治理:你如何叠加?

    数据治理:你如何叠加?

    企业和组织生成的数据比他们知道的更多。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:142次

  • 那些关于数据治理的不过时观点

    那些关于数据治理的不过时观点

    数据是有成本,数据是有成本的。存储数据是需要成本的,数据的成本绝非只有物理存储空间成本那么简单,实际上它包括了下述五种成本要素:……查看详情

    发布时间:2019.08.19来源:CSDN浏览量:193次

  • 2019年的数据治理趋势

    2019年的数据治理趋势

    2018年十月,DATAVERSITY ®发布报告趋势数据治理和数据管理,这是基于对囊括主要来自信息和数据治理专家,数据和信息架构师,以……查看详情

    发布时间:2019.02.20来源:亿信华辰浏览量:164次

  • 数据清洗与数据治理的3个不同点

    数据清洗与数据治理的3个不同点

    ​数据清洗,是指发现并纠正数据文件中可识别的错误的最后一道程序,是数据治理工作中必不可少的一项关键任务,是数据治理的子集.……查看详情

    发布时间:2021.04.09来源:亿信数据治理研究院浏览量:1227次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议