为什么数据标准这么重要,三个小招教你实现

发布时间:2020.07.17来源:CSDN浏览量:72次标签:数据治理

评价是现代社会各领域的一项经常性的工作,是科学做出管理决策的重要依据。随着人们研究领域的不断扩大,所面临的评价对象日趋复杂,如果仅依据单一指标对事物进行评价往往不尽合理,必须全面地从整体的角度考虑问题,多指标综合评价方法应运而生。所谓多指标综合评价方法,就是把描述评价对象不同方面的多个指标的信息综合起来,并得到一个综合指标,由此对评价对象做一个整体上的评判,并进行横向或纵向比较。

而在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。

目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法、标准差法)、折线型方法(如三折线法)、曲线型方法(如半正态性分布)。不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循

常见的方法有:min-max标准化(Min-max normalization),log函数转换,atan函数转换,z-score标准化(zero-mena normalization,此方法最为常用),模糊量化法。本文只介绍min-max法(规范化方法),z-score法(正规化方法),比例法(名字叫啥不太清楚,归一化方法)。

 

数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上,常见的数据归一化的方法有:min-max标准化(Min-maxnormalization)也叫离差标准化,是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:其中max为样本数据的最大值,min为样本数据的最小值。这种方法有一个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。log函数转换通过以10为底的log函数转换的方法同样可以实现归一下,具体方法如下:看了下网上很多介绍都是x*=log10(x),其实是有问题的,这个结果并非一定落到[0,1]区间上,应该还要除以log10(max),max为样本数据最大值,并且所有的数据都要大于等于1。atan函数转换用反正切函数也可以实现数据的归一化:使用这个方法需要注意的是如果想映射的区间为[0,1],则数据都应该大于等于0,小于0的数据将被映射到[-1,0]区间上。而并非所有数据标准化的结果都映射到[0,1]区间上,其中最常见的标准化方法就是Z标准化,也是SPSS中最为常用的标准化方法:z-score 标准化(zero-meannormalization)也叫标准差标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

 


1 什么是数据标准化(Normalization

将数据按比例缩放,使之落入一个小的特定区间。在某些比较评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值便于不同单位或量级的指标能够进行比较和加权

2 有哪些常用方法呢?

方法一:规范化方法

pic1

  •  也叫离差标准化,是对原始数据的线性变换,使结果映射到[0,1]区间。

方法二:正规化方法pic2

  • 这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x’。
  • z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。
  • spss默认的标准化方法就是z-score标准化。
  • 用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。

步骤如下:
1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;
2.进行标准化处理:
zij=(xij-xi)/si
其中:zij为标准化后的变量值;xij为实际变量值。
3.将逆指标前的正负号对调。
标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。


方法三:归一化方法

pic3


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 如何制定数据标准

    如何制定数据标准

    一般来说,对于政府,会有国家或地方政府发文的数据标准管理办法,其中会详细规定相关的数据标准。所以在此主要讲企业如何制定数据标准。……查看详情

    发布时间:2019.12.20来源:知乎浏览量:103次

  • 亿信华辰&东芝|拥抱智能制造,实现生产数据实时采集

    亿信华辰&东芝|拥抱智能制造,实现生产数据实时采集

    在《中国制造2025》战略实施后,“制造业数字化、网络化、智能化”被定义为新工业革命的核心技术。离开生产数据采集,生产管理部门不能及时、……查看详情

    发布时间:2019.05.10来源:亿信华辰浏览量:91次

  • 让数据清澈如水:数据清洗的策略与方法

    让数据清澈如水:数据清洗的策略与方法

    在数据仓库中,数据是面向某一主题的数据的集合,这些数据从多个业务系统抽取而来,不同的数据来源加上历史数据的堆积,难免会有问题数据出现,这……查看详情

    发布时间:2020.11.23来源:亿信华辰浏览量:131次

  • 数据治理的关键要求是什么?

    数据治理的关键要求是什么?

    这些功能中的每一项都可以实现受管理的环境 目录和数据字典元数据的组合为数据策略和使用的可审计性提供了完整的信息。它还包含血统和操纵。工作……查看详情

    发布时间:2019.03.20来源:亿信华辰浏览量:89次

  • 亿信华辰成为DAMA数据管理知识体系授权培训基地

    亿信华辰成为DAMA数据管理知识体系授权培训基地

    2021年4月,亿信华辰被正式授权为DAMA中国(国际数据管理协会-中国分会)数据管理知识体系培训基地,成为DAMA在数据管理领域专业人……查看详情

    发布时间:2021.06.22来源:亿信华辰浏览量:92次

  • 大数据环境下的数据质量管理策略

    大数据环境下的数据质量管理策略

    信息时代,数据已经慢慢成为一种资产,数据质量成为决定资产优劣的一个重要方面。随着大数据的发展,越来越丰富的数据给数据质量的提升带来了新的……查看详情

    发布时间:2019.11.06来源:知乎浏览量:99次

  • 大数据行业必备书目:《数据治理知识图谱》限量首发,0元领

    大数据行业必备书目:《数据治理知识图谱》限量首发,0元领

    为了让数据不再熵增,助力政企数字化转型,我们将此心血集结成册,行业首发《数据治理知识图谱》,DAMA中国区主席汪广盛倾情推荐,限量300……查看详情

    发布时间:2021.07.14来源:亿信华辰浏览量:112次

  • 为什么数据治理对企业这么重要?

    为什么数据治理对企业这么重要?

    现在很多企业都有自己的数据治理计划,从而更便捷的管理企业,那么所谓的数据治理其实就是我们常说的数据分析,将零散的数据汇总起来,进行统一的……查看详情

    发布时间:2019.07.17来源:知乎浏览量:97次

  • 如何搭建企业级主数据管理平台

    如何搭建企业级主数据管理平台

    企业应用系统的构建多是以项目为中心,缺乏自上而下的规划。这样势必会导致企业信息孤岛现象越来越严重。主数据作为企业应用系统中最重要的业务单……查看详情

    发布时间:2022.03.17来源:小亿浏览量:168次

  • 数据治理—这些你应该清楚

    数据治理—这些你应该清楚

    我看到组织在开始他们的数据治理之旅时犯的一个重大错误就是忘记了数据背后的基本原理。因此,不要仅仅治理治理。无论您是需要减少风险或最大限度……查看详情

    发布时间:2019.03.14来源:亿信华辰浏览量:95次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议