为什么数据标准这么重要,三个小招教你实现

发布时间:2020.07.17来源:CSDN浏览量:2次标签:数据治理

评价是现代社会各领域的一项经常性的工作,是科学做出管理决策的重要依据。随着人们研究领域的不断扩大,所面临的评价对象日趋复杂,如果仅依据单一指标对事物进行评价往往不尽合理,必须全面地从整体的角度考虑问题,多指标综合评价方法应运而生。所谓多指标综合评价方法,就是把描述评价对象不同方面的多个指标的信息综合起来,并得到一个综合指标,由此对评价对象做一个整体上的评判,并进行横向或纵向比较。

而在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。

目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法、标准差法)、折线型方法(如三折线法)、曲线型方法(如半正态性分布)。不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循

常见的方法有:min-max标准化(Min-max normalization),log函数转换,atan函数转换,z-score标准化(zero-mena normalization,此方法最为常用),模糊量化法。本文只介绍min-max法(规范化方法),z-score法(正规化方法),比例法(名字叫啥不太清楚,归一化方法)。

 

数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上,常见的数据归一化的方法有:min-max标准化(Min-maxnormalization)也叫离差标准化,是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:其中max为样本数据的最大值,min为样本数据的最小值。这种方法有一个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。log函数转换通过以10为底的log函数转换的方法同样可以实现归一下,具体方法如下:看了下网上很多介绍都是x*=log10(x),其实是有问题的,这个结果并非一定落到[0,1]区间上,应该还要除以log10(max),max为样本数据最大值,并且所有的数据都要大于等于1。atan函数转换用反正切函数也可以实现数据的归一化:使用这个方法需要注意的是如果想映射的区间为[0,1],则数据都应该大于等于0,小于0的数据将被映射到[-1,0]区间上。而并非所有数据标准化的结果都映射到[0,1]区间上,其中最常见的标准化方法就是Z标准化,也是SPSS中最为常用的标准化方法:z-score 标准化(zero-meannormalization)也叫标准差标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

 


1 什么是数据标准化(Normalization

将数据按比例缩放,使之落入一个小的特定区间。在某些比较评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值便于不同单位或量级的指标能够进行比较和加权

2 有哪些常用方法呢?

方法一:规范化方法

pic1

  •  也叫离差标准化,是对原始数据的线性变换,使结果映射到[0,1]区间。

方法二:正规化方法pic2

  • 这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x’。
  • z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。
  • spss默认的标准化方法就是z-score标准化。
  • 用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。

步骤如下:
1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;
2.进行标准化处理:
zij=(xij-xi)/si
其中:zij为标准化后的变量值;xij为实际变量值。
3.将逆指标前的正负号对调。
标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。


方法三:归一化方法

pic3


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • Informatica把AI带到了数据治理、数据治理和数据治理的合规性。

    Informatica把AI带到了数据治理、数据治理和数据治理的合规性。

    随着欧盟制定新隐私规定的最后期限越来越近,企业需要掌握数据的来源。……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:6次

  • 什么是主数据?

    什么是主数据?

    企业主数据(Master Data)是用来描述企业核心业务实体的数据,比如客户、合作伙伴、员工、产品、物料单、账户等;它是具有高业务价值……查看详情

    发布时间:2020.04.29来源:知乎浏览量:5次

  • 如何实现数据治理合作交流的4点建议

    如何实现数据治理合作交流的4点建议

    数据如同工业的石油一样,成为国家的重要资源,成为推动经济社会增长和发展的重要引擎。大数据、云计算、人工智能是大势所趋,发展这些技术也是人……查看详情

    发布时间:2019.10.25来源:知乎浏览量:7次

  • 什么是数据治理

    什么是数据治理

    什么是数据治理数据治理是指从使用零散数据变为使用统一主数据、从具有很少或没有组织和流程治理到企业范围内的综合数据治理、从尝试处理主数据混……查看详情

    发布时间:2018.09.13来源:浏览量:2次

  • 企业如何有效的进行主数据管理?

    企业如何有效的进行主数据管理?

    企业主数据治理主要分为4个阶段:主数据规划阶段、主数据标准梳理阶段、主数据治理阶段、主数据平台落地阶段。……查看详情

    发布时间:2020.05.07来源:知乎浏览量:4次

  • 数据指标体系搭建实践:指标管理四步法

    数据指标体系搭建实践:指标管理四步法

    因为不同人对于一个指标口径的理解,会存在偏差的,比如对于“新用户”这个原子指标的定义口径,有的人是理解为当日新注册的用户为新用户,而有些……查看详情

    发布时间:2020.09.21来源:头条浏览量:6次

  • 企业为什么要实施数据治理项目

    企业为什么要实施数据治理项目

    目前业界并没有对其概念的统一标准定义,我们可以这么认为,数据治理从本质上看就是对一个机构(企业或政府部门)的数据从收集融合到分析管理和利……查看详情

    发布时间:2020.04.09来源:知乎浏览量:4次

  • 四个用例证明数据治理的自动化的好处

    四个用例证明数据治理的自动化的好处

    如果没有至少某种程度的元数据驱动的自动化,组织就无法充分利用数据驱动的战略。……查看详情

    发布时间:2019.02.15来源:亿信华辰浏览量:5次

  • 数栈:为数据治理而生

    数栈:为数据治理而生

    2018年5月21日,中国银保监会印发《银行业金融机构数据治理指引的通知》(银保监发〔2018〕22号),新规从征求意见到正式稿落地仅仅……查看详情

    发布时间:2019.01.04来源:NinGoo浏览量:4次

  • 如何选择正确的数据治理工具

    如何选择正确的数据治理工具

    通过选择和利用具有嵌入式质量控制的智能和工作流驱动的自助数据治理工具,您可以实施可扩展的信任系统。让我们探索一些方法来为您的团队找到合适……查看详情

    发布时间:2021.06.16来源:亿信数据治理知识库浏览量:9次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议