为什么数据标准这么重要,三个小招教你实现

发布时间:2020.07.17来源:CSDN浏览量:83次标签:数据治理

评价是现代社会各领域的一项经常性的工作,是科学做出管理决策的重要依据。随着人们研究领域的不断扩大,所面临的评价对象日趋复杂,如果仅依据单一指标对事物进行评价往往不尽合理,必须全面地从整体的角度考虑问题,多指标综合评价方法应运而生。所谓多指标综合评价方法,就是把描述评价对象不同方面的多个指标的信息综合起来,并得到一个综合指标,由此对评价对象做一个整体上的评判,并进行横向或纵向比较。

而在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。

目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法、标准差法)、折线型方法(如三折线法)、曲线型方法(如半正态性分布)。不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循

常见的方法有:min-max标准化(Min-max normalization),log函数转换,atan函数转换,z-score标准化(zero-mena normalization,此方法最为常用),模糊量化法。本文只介绍min-max法(规范化方法),z-score法(正规化方法),比例法(名字叫啥不太清楚,归一化方法)。

 

数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上,常见的数据归一化的方法有:min-max标准化(Min-maxnormalization)也叫离差标准化,是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:其中max为样本数据的最大值,min为样本数据的最小值。这种方法有一个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。log函数转换通过以10为底的log函数转换的方法同样可以实现归一下,具体方法如下:看了下网上很多介绍都是x*=log10(x),其实是有问题的,这个结果并非一定落到[0,1]区间上,应该还要除以log10(max),max为样本数据最大值,并且所有的数据都要大于等于1。atan函数转换用反正切函数也可以实现数据的归一化:使用这个方法需要注意的是如果想映射的区间为[0,1],则数据都应该大于等于0,小于0的数据将被映射到[-1,0]区间上。而并非所有数据标准化的结果都映射到[0,1]区间上,其中最常见的标准化方法就是Z标准化,也是SPSS中最为常用的标准化方法:z-score 标准化(zero-meannormalization)也叫标准差标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

 


1 什么是数据标准化(Normalization

将数据按比例缩放,使之落入一个小的特定区间。在某些比较评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值便于不同单位或量级的指标能够进行比较和加权

2 有哪些常用方法呢?

方法一:规范化方法

pic1

  •  也叫离差标准化,是对原始数据的线性变换,使结果映射到[0,1]区间。

方法二:正规化方法pic2

  • 这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x’。
  • z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。
  • spss默认的标准化方法就是z-score标准化。
  • 用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。

步骤如下:
1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;
2.进行标准化处理:
zij=(xij-xi)/si
其中:zij为标准化后的变量值;xij为实际变量值。
3.将逆指标前的正负号对调。
标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。


方法三:归一化方法

pic3


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 为什么数据治理这么重要?

    为什么数据治理这么重要?

    一个科学合理的数据治理规范,是数据安全与价值的制度保障,是数据产业健康发展,甚至是国家人工智能战略实施不可或缺的前提条件。……查看详情

    发布时间:2019.01.18来源:亿信华辰浏览量:94次

  • 数据质量分析定义的六个阶段

    数据质量分析定义的六个阶段

    企业数据质量治理对象一般主要包括两类数据:一类是操作型数据,例如:主数据、参照数据和交易数据。……查看详情

    发布时间:2019.12.06来源:知乎浏览量:162次

  • 着力提升工业数据资源管理能力,加快工业互联网创新发展步伐

    着力提升工业数据资源管理能力,加快工业互联网创新发展步伐

    工业互联网是第四次工业革命的重要基石,作为数字化转型的关键支撑力量,正在全球范围不断颠覆传统制造模式、生产组织方式和产业形态,推动传统产……查看详情

    发布时间:2019.03.07来源:数据管理浏览量:141次

  • 云端世界数据治理的12步指南

    云端世界数据治理的12步指南

    数据治理是任何大数据战略的关键组成部分。随着公司越来越多地转向数据来影响他们的决策,数据所有者必须了解跨越应用程序,内部部署设施和云的数……查看详情

    发布时间:2018.11.19来源:Joey Jablonski浏览量:128次

  • 试论加强数据治理能力的重要性

    试论加强数据治理能力的重要性

    网络信息资源,是指所有以电子数据形式存储在信息光、磁等非纸质的文字、图像、声音、动画等多种形式的载体中,并通过网络通信、计算机或终端等方……查看详情

    发布时间:2018.12.05来源:网络传播杂志浏览量:130次

  • 业务词汇表和元数据:数据治理和词汇表准备

    业务词汇表和元数据:数据治理和词汇表准备

    我经常被问到“我们如何捕获数据词汇表资产”和“我们是否已准备好与数据管理员合作?”我的回答始终是:如果您能说明数据治理计划的目标并拥有赞……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:124次

  • 数据治理包括哪几个方面

    数据治理包括哪几个方面

    大数据时代的到来,让政府、企业看到了数据资产的价值,快速开始探索应用场景和商业模式、建设技术平台。这无可厚非。但是,如果在大数据拼图中遗……查看详情

    发布时间:2022.05.10来源:小亿浏览量:1888次

  • 国内成熟的数据治理解决方案提供商

    国内成熟的数据治理解决方案提供商

    如今,数据已成为企业的货币,但管理数据不当可能会很快失去控制。麻省理工学院最近的一项研究发现,对于一些企业来说,大数据正在变成糟糕的数据……查看详情

    发布时间:2019.11.25来源:CSDN浏览量:170次

  • 什么是数据治理,为什么重要?

    什么是数据治理,为什么重要?

    没有有效的数据治理,组织中不同系统中的数据不一致可能无法解决。例如,在销售,物流和客户服务系统中,客户名称可能会以不同的方式列出。……查看详情

    发布时间:2021.04.01来源:浏览量:131次

  • 为什么要进行数据交换

    为什么要进行数据交换

    企业大量的IT投资建立了众多的信息系统,但是随着信息系统的增加,各自孤立工作的信息系统将会造成大量的冗余数据和业务人员的重复劳动。企业急……查看详情

    发布时间:2020.08.10来源:知乎浏览量:107次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议