如何做好数据治理工作-数据治理之“术”

发布时间:2020.01.03来源:知乎浏览量:114次标签:数据治理

第一,做好顶层设计,把数据规划好。数据治理是一项长期、复杂的系统工程,要在组织、机制和标准等方面加强统筹谋划。

一是优化组织架构。充分认识数据的重要战略意义,将数据治理纳入企业中长期发展规划,及时调整组织架构,明确内部数据管理职责,理清数据权属关系,自上而下推动数据治理工作。

二是完善应用机制。在保障各方数据所有权不变前提下,统筹规划全局数据架构,完善跨机构、跨领域数据融合应用机制,实现数据规范共享和高效应用。

三是构建标准体系。建立涵盖金融数据采集、处理、使用等全流程的标准体系,打造金融数据的“通用语言”,提升金融数据质量,为数据互通、信息共享和业务协同奠定坚实基础。

第二,健全治理体系,把数据管理好。

一是做好数据资产管理。根据统一的数据标准体系,建立全局数据模型和科学合理的数据架构。在此基础上,管理维护全局数据资产目录,实现对数据资产的全面梳理和有效管控,解决数据质量不高、数据利用不足等问题。

二是做好数据分级管理。综合国家安全、公众权益、个人隐私和企业合法利益等因素,制定数据分级标准,基于全局数据资产目录将数据进行分级。针对不同等级数据采取差异化的控制措施,实现数据精细化管理。

三是做好数据共享管理。规范数据共享流程,确保数据使用方在依法合规、保障安全前提下,根据业务需要申请使用数据。数据所有方按规则审核确定数据使用范围、共享方式等,通过数据交换机制实现数据有序流转和安全应用。

第三,加强安全管控,把数据保护好。要遵循“用户授权、最小够用、全程防护”原则,充分评估潜在风险,把好安全关口,加强数据全生命周期安全管理,严防用户数据的泄露、篡改和滥用。

在采集环节,要向被采集用户进行明示,明确告知采集和使用的目的、方式以及范围,在获取用户授权后方可采集。

在存储环节,通过特征提取、标记化等技术将原始信息进行脱敏,并与关联性较高的敏感信息进行安全隔离、分散存储,严控访问权限,降低数据泄露风险。

在使用环节,借助模型运算、多方安全计算等技术,在不归集、不共享原始数据前提下,仅向外提供脱敏后的计算结果。

第四,强化科技赋能,把数据应用好。数据治理的核心环节是数据应用,要从算力、算法、存储、网络等维度加强技术支撑,切实增强数据应用能力。

在算力方面,加快分布式架构转型,充分发挥云计算等技术高性能、低成本、可扩展的优势,满足海量数据分析处理对计算资源的巨大需求。

在算法方面,基于深度学习、神经网络等技术设计数据模型和分析算法,提升数据洞察能力和基于场景的数据挖掘能力,为数据插上翅膀,让数据在金融领域展翼翱翔。

在存储方面,探索与互联网交易特征相适应、与金融信息安全要求相匹配的数据存储方案,稳步推动分布式数据库金融应用,实现数据高效存储和弹性扩展。

在网络方面,运用物联网技术丰富数据采集维度,利用5G技术带宽大、速度快、延时低等优势提升数据流转效率,打造金融数据“高速公路”。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理方案有哪几个步骤?

    数据治理方案有哪几个步骤?

    随着业务发展,公司对数据应用使用场景越来越多,数据也会随着业务快速增长,随之而来,数据质量、数据存储、数据模型建设等使用规范上都会出现一……查看详情

    发布时间:2022.03.15来源:小亿浏览量:716次

  • 数据治理和GDPR:世界上最全面的数据监管将如何影响您的业务

    数据治理和GDPR:世界上最全面的数据监管将如何影响您的业务

    如果您是数据专业人员,那么数据治理和GDPR可能就是您现在的首要任务。……查看详情

    发布时间:2019.01.25来源:亿信华辰浏览量:114次

  • 数据管理与数据治理的区别

    数据管理与数据治理的区别

    数据管理和数据治理有很多地方是互相重叠的,它们都围绕数据这个领域展开,因此这两个术语经常被混为一谈。此外,每当人们提起数据管理和数据治理……查看详情

    发布时间:2019.08.27来源:DAMS浏览量:116次

  • 数据治理和数据发现:实现数据监管实施

    数据治理和数据发现:实现数据监管实施

    企业不断努力利用数据驱动的洞察力或竞争情报,发展组织“数据文化”的概念将获得突出地位。数据和数据分析将继续在未来的全球业务中发挥关键作用……查看详情

    发布时间:2019.09.20来源:知乎浏览量:120次

  • 您是否与数据治理的战略转变保持一致?

    您是否与数据治理的战略转变保持一致?

    大多数企业都知道数据是收入增长和长寿的关键,并且他们必须找到一种方法来利用这些资产获取洞察力以获得竞争优势。……查看详情

    发布时间:2019.03.27来源:亿信华辰浏览量:120次

  • 数据质量问题分析

    数据质量问题分析

    数据质量问题主要包含四个问题域:技术问题、信息问题、流程问题、管理问题。1、技术问题由于具体数据处理的各技术环节异常所造成的数据质量问题……查看详情

    发布时间:2019.01.07来源:亿信华辰浏览量:141次

  • 什么是数据治理以及数据治理架构

    什么是数据治理以及数据治理架构

    数据治理(DataGovernance),是企业数据治理部门发起并推行的,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的……查看详情

    发布时间:2018.12.06来源:数据治理浏览量:138次

  • 浅谈数据质量管理

    浅谈数据质量管理

    随着互联网及数字化技术的飞速发展,我们生活在一个数字化转型的时代,各种数字化正在实实在在的改变着企业的日常运营,以及我们每个人的衣食住行……查看详情

    发布时间:2019.07.26来源:知乎浏览量:134次

  • 采用基于流程的风险管理方法避免运营灾难

    采用基于流程的风险管理方法避免运营灾难

    风险规避和风险管理似乎是决策制定的热门话题 - 而且有充分的理由。风险伴随着潜在的巨大运营,财务,声誉和法律影响,所以尽一切可能对其进行……查看详情

    发布时间:2019.02.15来源:亿信华辰浏览量:135次

  • 商业银行数据治理从源头抓起 坚持数据标准先行

    商业银行数据治理从源头抓起 坚持数据标准先行

    商业银行数据治理是一门将数据视为一项资产的学科。它涉及到银行以资产的形式对数据进行优化、保护和利用的决策权利。糟糕的数据管理意味着糟糕的……查看详情

    发布时间:2019.09.04来源:知乎浏览量:119次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议