每家公司都需要数据治理,这就是为什么

发布时间:2019.01.27来源:亿信华辰浏览量:118次标签:数据治理


随着GDPR法规迫在眉睫,企业需要确保他们掌握数据治理

当哲学家培根宣称,“知识就是力量”,在16月底日世纪,他无意中提供了数字时代的一个贴切的描述。

导致苹果,Facebook,谷歌和微软等数十亿美元的行业巨头每天收集数TB的信息并不仅仅是机会。像培根一样,他们认识到信息的价值,并证明了数据是成功的关键。

然而,并非所有数据都是良好的数据 - 质量起着至关重要的作用。如果累积的信息不显示某些属性,则无用。

通过数据治理理解所有这一切

“数据治理”的方法告诉我们数据记录在什么时候变得“有价值”,我们如何收集它,维护它,以及我们如何在其价值链的末尾存档或删除它。毕竟,数据的“使用寿命”与产品相同。

随着数据量我公司采用增大,所以确实有效率的,需要数据治理策略。我们列出了以下几点来解释它们的好处。

  1. 主数据管理

在谈到“有价值”的数据,我们首先需要看一下运行的数据治理的基础:主数据管理。

数据对象或数据记录应,顾名思义,地图和介绍一个真实的对象以及可能的。如果我们存储人对象在我们的数据库里有什么额外的信息,我们要收集它是一个好主意:名称,街道,居住地,邮政编码,电子邮件地址,以及更多。

对象越详细,我们可以采用的策略就越多。如果我联系被对象映射的人,最好通过电子邮件,电话,手机或邮寄方式进行联系吗?如果我有必要的信息,我可以选择。

因此,对数据对象进行正确且有针对性的描述至关重要。如果开始时不小心处理这些,则数据记录现在仅用于有限的目的。在最糟糕的情况下,它完全没用。

  1. 数据质量

如果我们以足够的质量水平描述我们的数据对象,我们必须确保主数据管理中所需的描述确实存在。我们将此过程称为“数据质量”。让我们看一下我们的person对象的一个简单示例。虽然将“name”定义为对象的属性是正确的,但如果字段不包含值或值不正确,则这是无用的。

收集数据的点,即“入境点”,在这里起着决定性的作用。有效的数据治理策略建立了保护机制,确保始终正确,完整地收集数据记录。

优点很明显 - 完整和正确的数据记录为我们节省了大量时间。如果数据符合上述质量标准,销售人员只能快速有效地工作。

例如,如果价格表包含差距,则研究所需条目将花费更多时间。更糟糕的是 - 如果记录错误的价格,与客户的会面可能会很尴尬,甚至导致业务损失。

  1. 数据维护和生命周期

虽然一开始看起来很明显,但请确保您不要忽视数据使用寿命有限的事实。我们将此现象描述为“数据生命周期”。此生命周期的持续时间以及我们可以从数据记录中提取的相关价值链取决于我们如何维护此数据记录。

因此,数据维护是功能数据治理原则的一个组成部分,也是稳定“数据质量”的决定性因素。它主要是从数据输入的角度来看具有“正确性”以充分利用它。但是,删除和归档也很重要,因为一旦数据到达其生命周期的末尾,它就不能成为“僵尸数据”。

只有我们不断删除无用的数据记录,我们才能获得长期高效的数据库,从而节省维护和相关工作的成本。

  1. 数据保护

到目前为止,我们只解决了数据的质量问题。然而,这个主题背后还有更多 - 保护我们公司免受外部访问至关重要。

如果我们回顾一下过去几年的“间谍丑闻”(2009年,德国铁路; 2010年,各种Lidl销售公司; 2013年,德国电信),我们很快意识到,数据保护不足是一个严重问题,会带来严重后果。除了数以百万计的经济处罚外,您的企业形象可能会受到严重损害。

数据治理不仅可以提供持续的高质量数据,还可以保护数据免受损害,并确保业务合作伙伴和客户的长期信任。从长远来看,每个公司都需要一个数据治理计划,因为这些明显的好处:

  • 高质量的数据可实现高效,灵活的使用,从而节省员工时间并降低运营成本。
  • 如果你想做出敏捷,快速和注重结果的决策,这是不可或缺的。
  • 它有助于数据保护和声誉管理。

数据治理模型为我们提供了建立此类计划所需的所有答案。在这里,“早晚会好起来”原则适用 - 越早实施有效的数据治理策略,成本和工作量就越低。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 五方面提升银行业数据治理能力

    五方面提升银行业数据治理能力

    银行业面临着数据治理的紧迫需求,应该多措并举提升数据治理能力。……查看详情

    发布时间:2019.11.28来源:知乎浏览量:144次

  • 浅谈银行的数据治理有哪些问题

    浅谈银行的数据治理有哪些问题

    企业数据治理的实践来看,目前在数据标准化这块落地也存在很大的困难,虽然现在有些企业在数据标准整理上已经基本上有了一个完整的标准,也存在标……查看详情

    发布时间:2020.02.21来源:知乎浏览量:106次

  • 数据治理治的是“数据”吗?

    数据治理治的是“数据”吗?

    数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。其实在我看来,……查看详情

    发布时间:2020.07.07来源:知乎浏览量:91次

  • 做好数据治理,助力政府治理体系和治理能力现代化

    做好数据治理,助力政府治理体系和治理能力现代化

    当前,数据及其技术的融合应用在政府经济调节、市场监管、社会管理、公共服务、生态环境保护等各项工作中强劲助攻、潜力无限。但由于数据是新型生……查看详情

    发布时间:2020.06.22来源:知乎浏览量:89次

  • 强大的数据治理是机器学习成功的关键

    强大的数据治理是机器学习成功的关键

    人工智能和机器学习这两个术语通常被视为同一枚硬币的两面。尽管如此,虽然ML算法增强了AI功能,并使它们能够进行更多的尖端和智能计算,但还……查看详情

    发布时间:2019.01.17来源:数据治理浏览量:121次

  • 数据湖中的数据管理与治理

    数据湖中的数据管理与治理

    当您转换到数据湖时,选择完全集成的数据湖泊管理平台将使您对数据充满信心,并对其进行扩展以包含越来越多的用户和有利于业务的用例。毕竟,这就……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:146次

  • 数据标准管理工具最全介绍:背景、功能和案例都在这!

    数据标准管理工具最全介绍:背景、功能和案例都在这!

    数据标准管理工具作为企业开展数据管控的抓手,需要把数据管理制度办法中建立的各项工作流在信息化系统中实现,避免线下流程,这就需要工具能支持……查看详情

    发布时间:2021.08.03来源:亿信数据治理知识库浏览量:911次

  • 数据治理:您需要了解的内容

    数据治理:您需要了解的内容

    数据治理:您需要了解的内容,持续的数据治理计划为遵守公司的战略计划提供了知识和制度基础。……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:93次

  • 数据质量管理包括什么方面

    数据质量管理包括什么方面

    数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。……查看详情

    发布时间:2019.11.07来源:知乎浏览量:179次

  • 为您的数据治理策略选择一个更聪明的比喻

    为您的数据治理策略选择一个更聪明的比喻

    组织希望“数据驱动”,其要点是他们希望人们使用数据来做出决策。领导们知道太多的人组成的东西。每一……查看详情

    发布时间:2019.01.14来源:亿信华辰浏览量:147次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议