干货 | 企业数据治理最重要的三步

发布时间:2021.05.12来源:亿信数据治理知识库浏览量:10次标签:数据治理

数据治理的重要性不言而喻。对于大部分企业来说,由于内部数据构成复杂,每次具体应用时需要服务商重新清洗,费时费力,效率很低。对企业内部数据进行标准化治理,是有效利用的第一步。下面,就来说说企业数据治理要如何在项目开启时就赢在起跑线上:


第一步 对企业数据进行归集和标准化


信息化领域有一个说法就是“垃圾进,垃圾出”,意指用脏乱的数据做样本,产生的研究成果也是毫无价值的。数据的污染可能发生在数据产生、采集、传输、流转、加工、存储、提取、交换等各个环节,因此要保证数据治理目标的实现,就必须对数据进行全流程的管控,要在数据标准、数据质量、数据文件交换、元数据、数据生命周期、主辅数据源、数据安全、数据责任等方面形成统一的数据治理规范。


第二步 数据模型管理和标签梳理


数据治理的核心是数据模型管理。目前企业原始数据库中存在大量的字段和表没有注释,意思含糊不清,同名不同义、同义不同名,冗余字段、枚举值不一致的现象普遍存在。这些问题都会直接影响系统对数据的识别。数据建模让数据结构更加丰富和结构清晰化,便于数据口径统一。企业沉淀了大量数据模型之后,要及时做保留或删除管理,不做数据模型管控,那么这些历史问题会给新一代系统改造带来很多困扰。


除此之外,数据标签是对数据实体特征的符号表示,每一个数据标签都是我们认识、观察和描述数据实体的一个角度。因此内部统一标签也至关重要。商品标签包含了条码、规格、口味、图片、包装等信息。顾客标签包括性别、年龄、地区、兴趣爱好、产品偏好、购买力、忠诚度等等。


在实际的数据治理中,数据资源目录、数据分类、数据标签是相互配合、相辅相成的。建立良好的数据资源目录的第一步就是明确数据资源的分类,根据数据分类去组织资源、编目,之后是为数据资源打上数据标签,让数据资源更贴近用户、更容易管理,以便充分发挥出数据的价值。


第三步 企业算法和人工智能应用


在对企业数据进行归集和标准化,并对数据模型进行管控和标签梳理之后,就可以对数据进行管理,并辅之以相应算法和人工智能,在具体业务场景应用。


以数据模型管理为例:人工智能可以帮助企业实现经验模型与计算机模型的完美融合,构建商品和会员的知识图谱。


元数据管理为例:人工智能实现对非结构化数据的采集和关键信息的提取,并实现元数据的维护和整理。


再以主数据管理为例:主数据是企业核心业务实体的数据,是在整个价值链上被重复、共享应用与多个业务流程的,并与各个业务部门与各个系统之间共享的基础数据。在复杂数据主数据系统中,机器学习,自然语言处理等人工智能技术可以帮助定义和维护数据匹配规则,以及确定与主数据相关的记录,建立交叉引用等规则。


新基建在某种程度上已经成为国家战略,可以预见,未来几年,全国零售业将迎来一次数字化建设的高潮,借助零售新基建的落地,我们期待业内零售企业快速提升数据管理和应用能力,让中国的零售行业变成一个高效的行业,更好的为消费者服务。


关于亿信华辰


亿信华辰是中国专业的智能数据产品与服务提供商,一直致力于为政企用户提供从数据采集、存储、数据治理、数据分析到智能应用的智能数据全生命周期管理方案,帮助企业实现数据驱动、数据智能,已积累了8000多家用户的服务和客户成功经验,为客户提供数据分析平台、数据治理平台搭建等专业的产品咨询、实施和技术支持服务。

亿信华辰数据治理产品.png

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 做好数据标准管理对企业来说有什么意义?

    做好数据标准管理对企业来说有什么意义?

    数据标准是数据全生命周期质量控制的机制与制度保障,贯穿数据从采集到存储、治理和分析应用的全过程,只有建立一套完备的标准体系,数据标准化之……查看详情

    发布时间:2020.05.08来源:知乎浏览量:9次

  • 中小行纷纷设立数据治理专营部门

    中小行纷纷设立数据治理专营部门

    “数据治理基础建设缺失、人才匮乏、意识觉醒较晚。”一名来参加今日第三届中国数字银行论坛的西部中小银行人士,用了三个并列短句,来形容目前中……查看详情

    发布时间:2019.11.29来源:CSDN浏览量:13次

  • 大数据时代监管安全的“智慧大脑”

    大数据时代监管安全的“智慧大脑”

    在这里,监控民警不仅是监狱监管安全防线上的眼睛、耳朵、嘴巴,还是视频监控、固证锁证、指挥联动、应急处突的“智慧”大脑。这里就是监狱监管安……查看详情

    发布时间:2019.03.27来源:亿信华辰浏览量:7次

  • 大数据在应急管理中的应用——亿信华辰

    大数据在应急管理中的应用——亿信华辰

    随着互联网、社交媒体和人工智能的技术发展和应用普及,大数据在应急管理中发挥的作用将越来越重要,是应急管理未来发展的重要方向之一。……查看详情

    发布时间:2019.02.25来源:亿信华辰浏览量:12次

  • 数据治理活跃在企业的方方面面

    数据治理活跃在企业的方方面面

    我们都知道数据治理存在感知问题(温和地说)。真正的数据治理是对任何和所有数据管理活动的控制和支持。但是,数据领导者常常关注控制角度或从技……查看详情

    发布时间:2019.03.13来源:亿信华辰浏览量:14次

  • 管理「政府数据资产」该怎么做

    管理「政府数据资产」该怎么做

    政府数据资产,是指由政务服务实施机构建设、管理、使用的各类业务应用系统,以及利用业务应用系统依法依规直接或间接采集、产生并管理的,具有经……查看详情

    发布时间:2020.07.17来源:CSDN浏览量:12次

  • 数据治理的四个阶段

    数据治理的四个阶段

    数据治理的定义是对数据资产管理行使权力和控制的活动集合。其最终目的是挖掘数据价值,推动业务发展,实现盈利。……查看详情

    发布时间:2021.03.06来源:亿信数据治理知识库浏览量:23次

  • 企业如何实现成功的数据治理

    企业如何实现成功的数据治理

    如今,大数据正在社会的各行各业发挥着越来越重要的作用,数据已成为企业的核心资产和重要战略资源,是重要的生产因素。但是数据中存在着各种各样……查看详情

    发布时间:2019.09.09来源:知乎浏览量:10次

  • 数据治理如何释放信息的力量来解决实际的业务问题

    数据治理如何释放信息的力量来解决实际的业务问题

    数字商务永远改变了零售业的面貌。广泛的产品选择,快速交付和简单易用的搜索功能,也推荐相关产品,提高了标准。……查看详情

    发布时间:2019.08.02来源:知乎浏览量:19次

  • 数据治理和当今的新数据目标

    数据治理和当今的新数据目标

    尽管实施全面的治理计划似乎令人生畏,但拥有有效数据治理策略和MDM解决方案的公司不断寻找新方法从数据中提取价值。……查看详情

    发布时间:2019.03.25来源:亿信华辰浏览量:13次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议