立即扫码
享受一对一服务

发布时间:2021.05.12来源:亿信数据治理知识库浏览量:179次标签:数据治理
数据治理的重要性不言而喻。对于大部分企业来说,由于内部数据构成复杂,每次具体应用时需要服务商重新清洗,费时费力,效率很低。对企业内部数据进行标准化治理,是有效利用的第一步。下面,就来说说企业数据治理要如何在项目开启时就赢在起跑线上:
第一步 对企业数据进行归集和标准化
信息化领域有一个说法就是“垃圾进,垃圾出”,意指用脏乱的数据做样本,产生的研究成果也是毫无价值的。数据的污染可能发生在数据产生、采集、传输、流转、加工、存储、提取、交换等各个环节,因此要保证数据治理目标的实现,就必须对数据进行全流程的管控,要在数据标准、数据质量、数据文件交换、元数据、数据生命周期、主辅数据源、数据安全、数据责任等方面形成统一的数据治理规范。
第二步 数据模型管理和标签梳理
数据治理的核心是数据模型管理。目前企业原始数据库中存在大量的字段和表没有注释,意思含糊不清,同名不同义、同义不同名,冗余字段、枚举值不一致的现象普遍存在。这些问题都会直接影响系统对数据的识别。数据建模让数据结构更加丰富和结构清晰化,便于数据口径统一。企业沉淀了大量数据模型之后,要及时做保留或删除管理,不做数据模型管控,那么这些历史问题会给新一代系统改造带来很多困扰。
除此之外,数据标签是对数据实体特征的符号表示,每一个数据标签都是我们认识、观察和描述数据实体的一个角度。因此内部统一标签也至关重要。商品标签包含了条码、规格、口味、图片、包装等信息。顾客标签包括性别、年龄、地区、兴趣爱好、产品偏好、购买力、忠诚度等等。
在实际的数据治理中,数据资源目录、数据分类、数据标签是相互配合、相辅相成的。建立良好的数据资源目录的第一步就是明确数据资源的分类,根据数据分类去组织资源、编目,之后是为数据资源打上数据标签,让数据资源更贴近用户、更容易管理,以便充分发挥出数据的价值。
第三步 企业算法和人工智能应用
在对企业数据进行归集和标准化,并对数据模型进行管控和标签梳理之后,就可以对数据进行管理,并辅之以相应算法和人工智能,在具体业务场景应用。
以数据模型管理为例:人工智能可以帮助企业实现经验模型与计算机模型的完美融合,构建商品和会员的知识图谱。
以元数据管理为例:人工智能实现对非结构化数据的采集和关键信息的提取,并实现元数据的维护和整理。
再以主数据管理为例:主数据是企业核心业务实体的数据,是在整个价值链上被重复、共享应用与多个业务流程的,并与各个业务部门与各个系统之间共享的基础数据。在复杂数据主数据系统中,机器学习,自然语言处理等人工智能技术可以帮助定义和维护数据匹配规则,以及确定与主数据相关的记录,建立交叉引用等规则。
新基建在某种程度上已经成为国家战略,可以预见,未来几年,全国零售业将迎来一次数字化建设的高潮,借助零售新基建的落地,我们期待业内零售企业快速提升数据管理和应用能力,让中国的零售行业变成一个高效的行业,更好的为消费者服务。
关于亿信华辰
亿信华辰是中国专业的智能数据产品与服务提供商,一直致力于为政企用户提供从数据采集、存储、数据治理、数据分析到智能应用的智能数据全生命周期管理方案,帮助企业实现数据驱动、数据智能,已积累了8000多家用户的服务和客户成功经验,为客户提供数据分析平台、数据治理平台搭建等专业的产品咨询、实施和技术支持服务。
发布时间:2019.09.19来源:知乎浏览量:145次
发布时间:2019.02.19来源:亿信华辰浏览量:80次
发布时间:2020.11.13来源:知乎浏览量:111次
发布时间:2018.12.28来源:数据治理浏览量:88次
发布时间:2020.04.23来源:知乎浏览量:120次
发布时间:2020.04.29来源:知乎浏览量:121次
发布时间:2018.12.14来源:数据治理浏览量:111次
发布时间:2020.04.23来源:知乎浏览量:119次
发布时间:2019.03.18来源:亿信华辰浏览量:117次
发布时间:2018.12.18来源:数据治理浏览量:117次
人工
客服
预约
演示
您好,商务咨询请联系
400咨询:4000011866
技术
支持
您好,技术支持请联系
QQ:400-0011-866
(工作日9:00-18:00)