数据平台,数据中台是什么数据?

发布时间:2021.01.23来源:知乎浏览量:113次标签:数据治理

数据中台最核心的就是data API,它提供一个一个的可以复用的标准,这种数据服务给到业务系统。构建数据中台和构建数据平台也有很大的区别,构建数据中台一定是业务价值出发,而且数据中台一定不是一个单体的产品,数据中台里面的组件是有的是可以产品化的,比如数据存储,比如说你的数据分析工具,比如说你的数据探索的工具,你是可以有产品去组合的。但是数据中台一定不是一个产品,每个企业的数据中台会依赖于他企业的业务模式,他企业的信息化水平,他企业的投资预算,依赖于很多他的个体化,个性化的因素,所以数据中台对于不同的企业来讲,它一定是一个定制化的系统,因为它跟业务息息相关。数据中台的架构一定不是一个固定的,它一定是眼镜式架构,比如我们现在在有一个客户那里,一个做全球润滑油的零售客户,我们跟他们合作已经两年多了,将近三年了,他们最早的时候还没有数据中台的概念,但是从他们最早的时候,由于在中国没有it,所以他们最早的预算非常低,非常小。但是在那样的情况下,可能也就很少的预算,我们也能构建一个数据中台的雏形,然后一点一点地快速地为他们的业务产生价值,并且持续的演进到现在他们已经有了自己真正的数据中台,做的是比较完善的了。


第三,数据中台的建设一定要有战略耐心,这里的战略耐心我们把它叫做两个耐心。一个是投资方要有战略耐性,不是说我给你钱,给你1000万,你赶紧给我买个数据平台回来,然后买完了以后赶紧要产生业务价值,往往这样的项目,我们认为数据中台的构建一定要是平台就是数据的部分,技术的部分和业务的部分要同时前进。但是它一定会有一定的过程,有一定的过程,你的数据价值的探索,到你的数据价值变成一个数据产品的设计,然后变成一个可用的软件上线,这是一个需要时间的,所以我们认为投资方要有战略耐心。要认识到从数据到业务价值是有一个过程的。那么建设方也要有耐心,建设方不能好高骛远,一上来就做一个庞大的能力,然后在上面再生长,因为变化太快,技术更新太快,业务变化太快。所以我们所讲的数据中台的构建方式一定是敏捷的,然后是不断的迭代。

坦率来讲,这两年我们一直在思考数据治理是不是个伪命题?是因为在五年以前,十年以前,我在做传统的数据,做了很多数据治理项目,那样的数据治理项目在他看来很多是不成功的。之前我们所讲的成功是项目系统验收了叫成功,但是现在我们理解成功指的是它对企业的业务带来价值。

我们回想起来,过去的数据治理的项目,会产生三大类的服务,第一类,一堆流程,一堆标准,这是第一类,就是一堆文档。第二类,产生一堆岗位,就是会有很多的人,原来做业务的,做技术的,现在专门出来给它个名词叫数据管理员,或者给它个名词叫数据管理委员会,或者是物料审批员,像这样的名词会产生一堆岗位。第三类,会产生一堆系统,元数据管理系统,但是数据治理的项目都往往做起来都很庞大,因为我们希望就从根本上解决企业级数据质量的问题。但是现在我们回过头来看,我们觉得这种方式不一定是最有效的,而且很多时候当你把这些标准做出来,把系统做出来,实际上当时认为你可以解决的这些问题的这些数据已经发生了变化。

刻舟求剑是一个很好的名词来形容这个数据类项目数据治理的特点,因为数据在企业里面它是流动的,像河水一样,永远是在流动的,而且我们企业追求的是什么?就是数据的流动速度。我的数据流动越快,我产生的数据越多,我对用户的维度越细分,我的企业的经营就越有活力,我在市场上就越具有竞争力。但是你流动的越快,你很难保证。因为它一定会有你想不到的东西,你的系统响应力一定没那么快。这种情况下,我们希望现在用做一个数据标准做一个数据模型,然后做一个数据治理,然后就好像是说在河水上加标准化的检测站一样,这是做不到的,所以我们现在所讲的治理,把它叫精益数据治理,在业务层面跟业务一起去治理数据,而且我们追求的不是说一定要把数据质量设计到好多完美,做不到,这是不可行的,达不到的。
我们的目标是哪怕我的数据只有50%的准确性,那么在我提高数据质量同时,我也希望这50%准确的数据也能为我产生业务价值。这句话是我们现在正在尝试的,也是用来做的。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据质量在数据治理中的重要意义

    数据质量在数据治理中的重要意义

    数据的质量问题从一定的角度反映出组织当中存在的一些问题,而问题的来源可能是数据流动,可能业务流程也可能源于管理问题等等,数据质量问题的分……查看详情

    发布时间:2020.01.10来源:CSDN浏览量:127次

  • 实施数据治理项目是企业数字化转型的基础

    实施数据治理项目是企业数字化转型的基础

    企业数字化转型趋势是“数据”引领业务变革,数据集中管控成为大势所趋,如何做好数据共享和数据分析、如何发挥数据资产价值最大化是我们信息化工……查看详情

    发布时间:2019.10.22来源:知乎浏览量:126次

  • 当下数据治理是多么的重要

    当下数据治理是多么的重要

    公司有大量数据来自外部,更多数据在内部创建或更新,因此数据可能应该“受到管理”,因此您可以拥有良好的数据。数据治理是一组流程,可确保在整……查看详情

    发布时间:2019.09.04来源:知乎浏览量:135次

  • 来自园艺的5个数据治理课程

    来自园艺的5个数据治理课程

    所有这些数据增长和收购挑战都要求我们重新考虑我们的数据治理策略。我们根本没有确保正确管理和使用数据所需的可见性。我们的首要任务是消除风险……查看详情

    发布时间:2018.12.04来源:Debi Tadd浏览量:202次

  • 大数据治理:数据问题的全面解决之道

    大数据治理:数据问题的全面解决之道

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。数据的格……查看详情

    发布时间:2018.12.20来源:人民邮电浏览量:116次

  • 企业如何开展数据治理项目

    企业如何开展数据治理项目

    从大的阶段来看,数据治理主要分为存量数据“由乱到治”的阶段,以及增量数据严格按照规章制度实施确保“行不逾矩”的运营阶段。在“由乱到治”的……查看详情

    发布时间:2020.06.30来源:知乎浏览量:92次

  • 数据治理与组织架构

    数据治理与组织架构

    数据治理实际反映的是组织问题、文化问题,这也是许多公司为了明确权责划分而建立数据治理委员会的原因。同时,还需要明确的程序与执行程序的计划……查看详情

    发布时间:2019.11.01来源:知乎浏览量:111次

  • 中国科大:大数据实现本科生学业“全过程”管理

    中国科大:大数据实现本科生学业“全过程”管理

    近年来,中国科学技术大学(以下简称“中国科大”)践行“管理即服务”理念,实现“教、学、管”联动育人,完善“学业追踪”和“困难资助追踪”网……查看详情

    发布时间:2019.03.11来源:亿信华辰浏览量:71次

  • 银行业数据治理还面临着四方面的挑战

    银行业数据治理还面临着四方面的挑战

    一是数据整合度不高。银行内部数据虽多,涉及各个业务条线、各个部门,但未经系统化的治理,数据分布零散化,搜集整合存在错配,未能实现大数据集……查看详情

    发布时间:2019.11.29来源:知乎浏览量:114次

  • 数据治理要“三化”

    数据治理要“三化”

    “数据是新的‘石油’。在智能化、数字化大潮下,只有对大数据进行有效、高质量治理,才能将数据“原油”转变为有价值有质量的数据“石油”,从而……查看详情

    发布时间:2019.11.29来源:知乎浏览量:93次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议