企业数据中台建设过程中面临的三大挑战

发布时间:2020.07.10来源:知乎浏览量:138次标签:数据治理

1)业务挑战:如何以大数据赋能,反哺业务精耕?

越是成功的企业,业务发展的痛点越难以单点解决,需要整体思考、科学决策、集体行动,在业务的创新中解决这些痛点。
比如,如何做好会员精细化运营?如何为门店挑选合适的商品且控制好库存?如何动态打折以至不损伤毛利等等,是摆在企业前面的一个个难题,直接影响到企业的规模扩展或者利润提升,也是企业迫切需要解决的问题。
这就需要构建数据中台,通过大数据赋能业务。

相比传统数据业务,大数据业务的优势在于,通过整体规划智能化的数据应用,来推动业务创新。这就是企业数字化转型的业务内涵。这些数据智能应用需要将业务经验和解决方法论、全域的数据模型,与算法模型相结合,我们称之为“业务智能模型”,它的价值在于“降本增效”。
在奇点云过去三年的数据中台实践中,我们发现这些业务智能模型遍布在整个零售产业上下游。比如通过全方位的数据反馈并指导买手做好选品;又如通过商品的聚类,发现某类特征的商品,可以优化打折速度和幅度,以此提高整体的折扣率从而增加毛利等。再比如,通过门店和商品数据,通过最优算法,解决“什么样的店铺类型应该铺什么商品”,以提升门店的顾客进店转化率,从而提升效益。
业务智能模型需要数据和业务系统深度结合,在运营工作中直接产生效果,让业务能够自动化、高效地运转起来。

2)技术挑战:如何高效的数据治理,远离数据“黑洞“?
要做好有价值的业务智能模型,离不开高质量、高可用的、全域的数据中台,数据治理就显得非常重要。“数据治理”是企业数字化转型中典型的大数据技术问题。
数据治理,解决的是“业务越来越复杂而数据现状的脏乱差”带来的挑战。如何合理规划数据结构?如何规范定义数据?如何有效管理数据资产?如何安全分发使用数据?这都需要一套完善的数据治理体系,驱动企业数据化运营转型。
数据治理是基础,也制约了企业的数据智能化方向的发展,难以做到数据创新。从理念上来看,“治”不应只在事后,更应在事前,“理”考验的是业务与技术能力的结合。从实际内容上来看,数据治理是一套方法体系+工具集,旨在帮助企业合理的架构数据、规范的定义与加工数据、清晰的管理数据、安全的应用数据,促使数据从成本中心变成价值中心,驱动企业数字化转型。

3)组织挑战:如何深挖数据红利,成为业务创新“能手“?
从解决业务挑战和技术挑战出发,企业必须把数字化转型定义为战略问题,从而推动“数据中台”的落地,这也给企业带来了组织上的挑战。
一般来讲,传统的数仓解决方式有两大问题:一方面从业务系统直接计算数据,非解耦架构对业务系统影响极大。一方面基于DB构建的数据仓库,计算及查询效率难以满足业务数据膨胀的大趋势要求。解决这些问题,已经不是藏在“IT部门”的数据小分队这一组织形式所能够解决的。
2018年7月,阿里云总结了过去的成功经验,在业界大力推出“数据中台”解决方案,很好地解决了这些问题。奇点云提出的数据中台架构与设计,其出发点是支撑复杂的、多系统的、数量巨大的、多应用场景的业务形态。在组织层面理顺以下部门或团队关系,来解决企业在组织落地战略上的困惑:

①与传统IT业务之间的关系:业务和计算分离,业务和数据分离
大数据业务应与业务系统解耦,采用T+1离线计算方法产出结果数据,不直接在业务系统上进行数据计算,实现了业务和计算的分离、业务和数据的分离。

大数据部门的工作起点是满足多种计算场景的需求。支持大数据计算,结合了多种计算引擎,针对不同的场景使用不同的计算引擎,如离线计算引擎、实时计算引擎、多维分析引擎、即席查询引擎、实时搜索引擎。

②与业务部门的关系:站在企业视角打通数据,支撑业务部门用数据
支持各种异构数据源打通,提供了一套基于reader和writer的抽象化数据抽取插件,除了提供系统自带的插件外,还支持自定义实现reader和writer插件,通过公共的管道,实现结构化和非结构化数据的互相传输,统一技术框架。

支持业务部门的高并发多场景的实时查询,数据中台集成了基于分布式的KV查询框架,可以支持海量级别的查询请求,并且响应时间可以控制在毫秒级别。
支持多场景的数据服务,灵活快速支撑业务需求,向导和自定义双模式快速生成API,实时监控API调用情况。
面向业务部门,为业务部门的数据分析、开发提供培训和技术支持。

③与合作伙伴的关系:找到数据部门的核心能力
应该深入业务,影响业务效率。数据模型融合离散的业务数据,可借助数据中台快速构建数据模型,建立全方位的数据视角,消灭信息孤岛和数据差异,灵活支撑业务的变动。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 四说大数据时代“神话”:从大数据到深数据

    四说大数据时代“神话”:从大数据到深数据

    为国内最大的电商平台之一,苏宁每天要处理数量巨大的数据。为了更快速高效地处理这些数据,苏宁调度平台采取了哪些措施呢?……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:160次

  • 外部管理数据集的政府数据可靠性

    外部管理数据集的政府数据可靠性

    当我在退伍军人事务部工作时,我联系了许多人 - 联邦政府以外的人 - 他们希望在联邦政府开放数据工作时帮助清理,使用和改进公共数据集。当……查看详情

    发布时间:2019.03.08来源:亿信华辰浏览量:137次

  • 数据治理的未来:平衡数据治理和数据管理

    数据治理的未来:平衡数据治理和数据管理

    如何通过快速访问高质量数据,灌输信心并支持数据驱动的决策,为业务合作伙伴创造竞争优势?在为所有CitizenBank的企业数据创建和实施……查看详情

    发布时间:2018.12.27来源:亿信华辰浏览量:138次

  • 数据治理引领企业数字化转型

    数据治理引领企业数字化转型

    随着数字化时代的到来,数据已经成为了企业的重要资产之一。然而,如何确保数据的质量、安全性和合规性,成为了企业面临的难题。作为国内知名的数……查看详情

    发布时间:2023.09.26来源:互联网浏览量:134次

  • 用大数据助力治理现代化

    用大数据助力治理现代化

    “要运用大数据提升国家治理现代化水平”“要建立健全大数据辅助科学决策和社会治理的机制,推进政府管理和社会治理模式创新”,习近平总书记的重……查看详情

    发布时间:2019.10.17来源:知乎浏览量:124次

  • 数据质量包括那些方面

    数据质量包括那些方面

    数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。……查看详情

    发布时间:2020.04.09来源:百度浏览量:236次

  • 实施数据治理 - 学到3个主要经验教训

    实施数据治理 - 学到3个主要经验教训

    尽管数据治理在开发过程中可能会有些流动和迭代,但遵循最佳实践并设计精心定位的路线图有助于确保成功。……查看详情

    发布时间:2018.12.21来源:亿信华辰浏览量:189次

  • 数据治理推动业务价值并降低风险

    数据治理推动业务价值并降低风险

    治理推动业务价值并降低风险 数据分析治理是你需要把你的数据转化为创造竞争优势,并帮助您的宝贵商业资产的保险EVOLVE您的组织。……查看详情

    发布时间:2018.11.16来源:互联网浏览量:149次

  • 数据管理和物联网

    数据管理和物联网

    数十亿带传感器的东西环绕着人们和他们的生活。这些物联网(IoT)与人,家庭,工厂,工作场所,城市,农场和车辆互动。Gartner预测,到……查看详情

    发布时间:2019.02.20来源:亿信华辰浏览量:169次

  • 扩展数据治理 推进数字化转型

    扩展数据治理 推进数字化转型

    数据正在重新定义我们的工作方式。当数据在上升至公司议程的同时,数据治理也得到了更多关注。数据治理正在迅速成为企业战略重点和不可或缺的业务……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:180次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议