说说银行业信息部数据治理的体验

发布时间:2020.02.21来源:知乎浏览量:19次标签:数据治理

数据治理本身分狭义和广义两个区别,狭义的治理主要是组织、制度、流程这些,data governance的一个定义就是 the management of management;广义的治理包括数据质量、数据标准这些。12年我们为银监会课题写过一个数据治理机制研究与实践,14年工行和邮储又合写了一本数据治理的书,里面的内容都属于广义的治理了。

说说经验,数据治理强调两点,一是高层支持,二是各部门广泛参与。这两点在我行都贯彻的不错,越体制内就越听监管的话,所以对于数据治理也就最重视。银监会有数据质量良好标准,非现场检查加现场检查,这是银行数据治理工作最大的督导。银行内数据治理各项工作的开展都要想好这两个因素,搞定了就能事半功倍。

说句题外话,银行有成建制成体系的数据管理工作,这在各个行业内属于最好的;用成熟度衡量的话,基本都是3.0水平。其他传统行业没有这么强大的动力,互联网电商又没有这个必要,所以想深入了解的话,可以找工、农、建、交、浦发、光大的同学聊,13年银监会数据质量良好标准评估指南中的最佳实践就来源于这几家。(送个知识点:银行的数据治理最佳实践,分为包括建行和不包括建行的两个版本)

此外,数据治理对人的要求蛮高,要懂业务、懂数据、懂技术,所谓上能写制度办法,下能查数分析;另外,还要懂权衡、懂策略,甚至学学兵法,因为具体工作八成都是跟人有关。要求虽高,但实际上具体工作挺无聊的,因为挫败感占的比例要远高于成就感,个中体会只有行内人能了解了。

更具体的,

  • 数据标准化。对共用数据制定标准,达成系统建设共识,降低数据转换代价。银行部门使用的系统较多,每个系统的定义千差万别,但都有一些共用的数据,如货币代码、国家代码、日期(有些8位,有些10位,有些...)等,这些数据的使用都要有明确标准和使用场景。
  • 数据流向可追溯,数据用途明确化。数据流向可追溯,数据用途明确化。系统之间数据传递(如文件)可追溯,如清楚数据文件来源于那里,中途经过了那些系统的过滤,最终被哪些用户使用。
  • 数据交换平台化。建设数据交换平台,支持数据流动。即有一个数据交换平台支持系统之间的数据流动,对数据的流出方和流入方的权限和规则加以控制。
  • 数据市集化。共享类数据集市化,即需即取。系统和系统之间的共享数据共享与数据市集,供相关的经营分析系统使用,或者分析结果后最后回吐到市集。
  • 数据使用工具化。建设数据ETL,对数据进行清洗,变形,装载。
  • 数据仓库化/大数据平台。存储历史数据供经营分析使用。
  • 数据分析平台化。提供建模分析使用工具,进行经营分析,形成分析结果,回吐给其它平台。
  • 数据可视化。对于一些数据分析结果做到可视化,能将数据通过图形或者报表的方式展示给决策者。
  • 亿信华辰的睿治充分能够满足需求,让你的数据治理有方,清澈如水!

    (部分内容来源网络,如有侵权请联系删除)
    立即免费申请产品试用 免费试用
    相关文章推荐
    • 善治:良好学校的基础

      善治:良好学校的基础

      包机行业的头号问题是什么?大卫弗兰克认为缺乏董事会治理能力。弗兰克说:“强大的董事会将改善特许学校的许多实践问题,从那些正在努力进入高绩……查看详情

      发布时间:2019.03.06来源:亿信华辰浏览量:23次

    • 大数据行业必备书目:《数据治理知识图谱》限量首发,0元领

      大数据行业必备书目:《数据治理知识图谱》限量首发,0元领

      为了让数据不再熵增,助力政企数字化转型,我们将此心血集结成册,行业首发《数据治理知识图谱》,DAMA中国区主席汪广盛倾情推荐,限量300……查看详情

      发布时间:2021.07.14来源:亿信华辰浏览量:39次

    • 数据质量包含的要素有哪几点

      数据质量包含的要素有哪几点

      数据是企业最有价值的资产之一,越来越多的企业认识到了数据的重要性。企业的数据质量与企业经营业绩之间有着直接的关系。高质量的数据可以保持公……查看详情

      发布时间:2022.02.17来源:小亿浏览量:80次

    • 说说银行业信息部数据治理的体验

      说说银行业信息部数据治理的体验

      数据治理本身分狭义和广义两个区别,狭义的治理主要是组织、制度、流程这些,datagovernance的一个定义就是themanageme……查看详情

      发布时间:2020.02.21来源:知乎浏览量:19次

    • 理论之企业数据挖掘成功之道

      理论之企业数据挖掘成功之道

      面对现在海量的、不完整的、模棱两可的数据,运用数据挖掘算法对数据进行查找,找出人们所不知道的、有实用价值的信息,这一过程就是数据挖据。随……查看详情

      发布时间:2019.05.23来源:知乎浏览量:18次

    • 数据治理-理数据,现状分析

      数据治理-理数据,现状分析

      针对企业数据治理所处的内外部环境,从组织、人员、流程、数据四个方面入手,进行数据治理现状的分析。……查看详情

      发布时间:2020.07.17来源:知乎浏览量:23次

    • 数据集成的原理

      数据集成的原理

      在Experian Data Quality上多次使用这个类比,但这仅仅是因为它在引用数据标准化时非常有意义。 数据标准化只是构建……查看详情

      发布时间:2018.12.29来源:数据治理浏览量:22次

    • 企业数据治理框架

      企业数据治理框架

      大多数公司都采用零碎,随意的方式收集和存储数据。公司采用孤立的方法获取数据并不罕见,每个部门都自己收集数据并设计自己的管理规则。从整体上……查看详情

      发布时间:2019.08.02来源:知乎浏览量:18次

    • 大数据时代地方政府大数据治理战略

      大数据时代地方政府大数据治理战略

      全球各地的组织正在投资于能够以先前无法想象的方式容纳和处理数据的系统。在某些情况下,企业甚至会根据这些新系统重新构建现有的IT环境。这些……查看详情

      发布时间:2019.08.15来源:浏览量:14次

    • 十年经验总结:企业物料主数据建设方案

      十年经验总结:企业物料主数据建设方案

      目前很多企业已建立ERP系统,关联到整个企业运营的物料数据仍然存在“一物多码”、“描述不规范”等数据质量问题,这会对企业数据流通共享和经……查看详情

      发布时间:2021.05.21来源:亿信数据治理知识库浏览量:82次

    相关主题
    您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议