数据质量提升的必要性

发布时间:2022.02.18来源:小亿浏览量:586次标签:数据治理

大数据的概念正在进一步渗透到各个行业与领域当中,随着信息技术和相关基础设施的不断完善,企业业务规模不断扩大,数据呈现了爆发式的增长。伴随着数据量的增长,与大数据相关的技术也在不断成熟,包括数据采集、数据存储、数据传输、数据处理、数据挖掘等一系列环节。大数据类的项目有个特点,那就是都是以数据为核心。数据将作为产生业务价值和实现业务目标的基石,那么数据的质量就变成了这类项目的一个极其重要的因素。数据的质量问题从一定的角度反映出组织当中存在的一些问题,数据质量问题的分析可以帮助企业找到问题的源头。高质量的数据对管理决策,业务支撑都有极其重要的作用。有些项目在初期由于并没有考虑数据质量的因素,导致了项目实施后期才发现,由于数据质量问题所带来的项目失败的风险。在项目的各个环节当中,我们都应当关注数据质量的管理。数据质量是数据治理中重要的一把标尺,而数据治理又是当今企业组织的首要战略重点之一,只有持续的数据质量改进才能推动数据治理体系的完善,为企业数据战略提供坚实的保障。

图片1.png

一、何为数据质量


数据质量,是指在业务环境下,数据符合数据消费者的使用目的,能满足业务场景具体需求的程度。数据的固有属性包括:

1)真实性,数据是客观世界的真实反映;

2)相关性,数据是数据消费者关注和需要的;

3)及时性,数据是随着变化及时更新的;

高质量的数据应从项目、组织、运营、战略、相关方角度、质量管理等满足数据消费者的要求。数据消费者对数据的需求有如下几个方面:

1)正确性,数据是现实世界的真实反映。

2)完整性,数据是完整没有遗漏的;

3)及时性,当需要时,数据获得是及时更新的;

4)安全性,数据是安全的,避免非授权的访问和操控;

5)可得性,当需要数据时能够获取到;

6)可理解性,数据是可理解和解释的;

1645150765(1).jpg

二、企业面临的数据质量问题


数据质量问题按照来源和具体原因,可以分为流程、管理、信息、技术四个问题域。

流程问题域

流程类问题是指由于人工操作流程和系统作业流程设置不当造成的数据质量问题,主要来源于主题分析数据的创建流程、装载流程、传递流程、使用流程、维护流程和稽核流程等各环节。

管理问题域

管理类问题是指由于管理机制方面及人员素质的原因造成的数据质量问题,如培训和奖励、人员管理等方面的措施不当导致的管理缺失。

数据质量提升的必要性

信息问题域

信息类问题是由于对数据度量标准以及数据本身的描述理解的偏差而造成的数据质量问题。产生这部分数据质量问题的原因主要有:数据度量的各种性质得不到保证和变化频度不恰当、元数据描述及理解错误等。

技术问题域

技术类问题产生的直接原因是技术实现上的某种缺陷,由于具体数据处理的各技术环节的异常造成的数据质量问题。数据质量问题的产生环节主要包括数据获取、数据创建、数据装载、数据传递、数据使用、数据维护等方面的内容。


三、数据质量提升的必要性


数据是企业最有价值的资产之一。企业的数据质量与企业经营业绩之间有着直接的关系。高质量的数据可以保持公司的竞争力,在经济动荡时期立于不败之地;而低质量数据往往会导致错误的业务决策。能够为企业提供洁净、结构清晰的数据,是企业开发业务系统、提供数据服务、发挥数据价值的必要前提。

好的数据治理平台就可以让数据质量变好,改善数据的质量,睿治智能数据治理平台由亿信华辰自主研发,是一款融合数据治理十大产品模块,覆盖数据全生命周期管理的应用平台,也是目前国内功能齐全的数据治理工具,助力数据标准落地,提升数据质量,实现数据资产融合

睿治数据质量管理平台以数据标准为数据检核依据,以元数据为数据检核对象,通过向导化、可视化等简易操作手段,将质量评估、质量检核、质量整改与质量报告等工作环节进行流程整合,形成完整的数据质量管理闭环。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理和业务转型

    数据治理和业务转型

    数字化转型仍然是依赖数据的核心业务计划。最初,数据功能侧重于监管合规性,然而,许多执行团队现在希望看到持续创新和首席数据官的结果,为公司……查看详情

    发布时间:2019.02.25来源:亿信华辰浏览量:121次

  • 如何利用元数据管理数据资产

    如何利用元数据管理数据资产

    如今,各大企业都在关心数据该如何使用,但大数据应用的前提是有高质量的数据。而很多企业内部数据形态多样,标准不统一,大数据应用往往得从数据……查看详情

    发布时间:2020.11.05来源:知乎浏览量:93次

  • 数据中台与数据仓库相比的四大优势

    数据中台与数据仓库相比的四大优势

    数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。因此,其重点在于数据的集合。数据仓库可使用维度建……查看详情

    发布时间:2020.11.21来源:知乎浏览量:117次

  • 杰出数据科学家的关键技能是什么?

    杰出数据科学家的关键技能是什么?

    学习如何应用不同的Python或R算法真的很简单:众所周知, 我们只需要修改一两行代码,就能将线性回归迁移到神经网络、SVM,或者你喜欢……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:115次

  • 当下企业数据治理有哪些重要性?

    当下企业数据治理有哪些重要性?

    随着大数据相关技术的不断成熟,数据作为一种资产,得到了越来越多企业机构的重视,为了能够有效的利用数据资产,数据治理成了当下政府和企业重点……查看详情

    发布时间:2019.07.18来源:知乎浏览量:72次

  • 元数据:数据治理的燃料

    元数据:数据治理的燃料

    企业渴望从可提供竞争优势的数据中获取洞察力。实现这一目标的最常见障碍是数据质量差。如果输入到预测算法的数据是“脏的”(具有丢失或无效的值……查看详情

    发布时间:2019.08.02来源:知乎浏览量:122次

  • 数据治理与数据质量有何不同?

    数据治理与数据质量有何不同?

    当我们听到数据管理这些词时,“ 数据质量 ”和“数据治理” 这两个术语出现了很多,它们应该是因为这些是确保组织以最佳方式利用其信息的重要……查看详情

    发布时间:2019.06.25来源:知乎浏览量:180次

  • 大数据管理实践在风险中受到关注

    大数据管理实践在风险中受到关注

    越来越多的情况是,数据专业也必须将这种态度带到更大的世界。……查看详情

    发布时间:2019.03.21来源:亿信华辰浏览量:119次

  • 从元数据角度来认识大数据

    从元数据角度来认识大数据

    什么是元数据?在前面的什么是元数据文章中,我们也提到过,元数据是数据的数据,可以帮助数据平台解决“有哪些数据”、“数据存储有多少”、“数……查看详情

    发布时间:2020.02.21来源:知乎浏览量:108次

  • 医疗数据治理在大数据分析中的作用

    医疗数据治理在大数据分析中的作用

    数据治理对医疗保健组织意味着什么?为什么在进行大数据分析之前掌握它至关重要?数据一直是医疗保健行业的生命线。从血压读数和手术记录到保险索……查看详情

    发布时间:2018.11.19来源:Thinkstock浏览量:123次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议