银行业数据治理实践难点及应对-数据治理实践

发布时间:2019.12.20来源:知乎浏览量:134次标签:数据治理

数据治理已成为在全球各国领导层面进行讨论的中心议题,其背景和目的,主要是旨在推动建立新的国际数据监管体系。在我国的金融行业中,随着互联网金融的异军突起和新兴技术的驱动,越来越多的商业银行选择在战略层面开启企业级数字化转型之路,利用数据来赋能业务,利用新技术提升效率和管理精细化。值得关注的是一些中小型银行在数字化时代背景下努力耕耘的身影,它们对于新理念新技术的响应速度更快,具有敏捷优势。同时,借助领先的大型银行和全国性股份制商业银行数据治理的经验,中小银行希望以其后发优势进行弯道超车,向资本市场或万亿资产俱乐部发起了猛烈攻势。

在数字化时代背景之下,金融监管机构为促进金融行业健康发展及风险控制,进一步提升监管数据的统计质量,通过发布监管指引并将数据治理与监管评级挂钩的方式来提高银行业金融机构对数据治理工作的重视,并能够结合自身实际,开展数据治理工作。但我们发现各银行在具体实施数据治理工作的过程中,对于数据治理工作本身的理解、对于数据治理工作价值应用的理解以及对于监管要求的理解,存在着很大的偏差。

大道之行也,天下为公,本文作为银行业金融机构数据治理实践热点与难点系列专题的开篇,尝试着将银行业金融机构在数据实践过程中的一些困惑和经验进行总结并分享,为业内同仁贡献一些参考,提供一些帮助,奉献一些价值,共同推动数据治理工作顺利开展。

数字化转型依托于数据治理
在ABCD(人工智能、区块链、云计算、大数据)技术的创新驱动下,越来越多的商业银行开启数字化转型之路。新兴金融科技逐渐应用到客户服务、业务受理、信贷流程、运营管理、风险管理和经营决策等银行核心业务之中。数字化转型的一切围都绕着数据,包括但不限于数据的获取、沉淀、运用和洞察。有效的数据治理体系是保障,健全统一的数据标准是基础,不断完善的数据质量控制是方法,持续优化的数据应用是目标。有效的数据质量控制有利于客观的分析和决策,有效地管理数据是银行实现数字化转型的基础。


银行如何应对数据治理监管
开展数据治理工作对不同的角色或部门来说都是一项新兴而持久的挑战。如何有效的应对,我们可以从以下几个方面来看。

对合规和内审部门来说,如何规范化标准化地开展数据治理评估与审计工作是一个新的课题。从哪些方面进行评估,评估的维度有哪些,评估的标准如何定义,评估的范围如何选择,这些内容其实急需业内专家共同的讨论,逐步细化,明确标准。

对数据治理的归口部门或相关的从业人员来说,数据治理是一项长期的、动态的工作,而且是类似“装修”的隐蔽工程,是一项“脏活、累活、苦活”。如何将数据治理的价值和成果显性化,将数据治理工作拆分为不同的模块和任务,进行逐步的推进和落实。如何将数据治理从管控式理念模式向服务式理念模式转换,是一项智慧工程。

对信息科技部门的人员来说,数据治理的工作涉及到信息系统建设的方方面面。信息科技部门在考虑银行整体信息系统架构的同时,还需考虑数据架构如何设计的,IT领域的数据治理的工作如何配套开展。如数据管控平台如何定位,数据管控平台与各源系统、数据加工分析平台之间的关系是什么,什么样的信息系统建设流程是符合数据治理要求规范的。

对各业务部门来说,数据治理绝不是“与己无关”的一项工作。数据治理工作是贯穿于数据产生、使用和销毁的全生命周期中的各个环节。作为主要的业务数据输入端,业务及一线部门扮演者重要的数据质量控制角色。数据质量的好坏直接影响数据分析的结果是否准确,而机构层面数据标准是否建立,各业务和管理领域的数据标准是否一致,也将影响着在使用数据的时候需要花多大的代价来进行数据标准的统一。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 人工智能商业化提速 创新奇智瞄准三大场景万亿市场

    人工智能商业化提速 创新奇智瞄准三大场景万亿市场

    “接下来的AI投资就是要去跟中国各行各业进行结合,把中国的后端效率大幅改进。而这个机会将不会小于过去几年阿里、腾讯那些前端的互联网巨头所……查看详情

    发布时间:2019.01.27来源:亿信华辰浏览量:143次

  • 数据质量需求与定义

    数据质量需求与定义

    数据质量通常表现为一组具体的流程和技术,用于识别和修正数据中的错误以支持业务运行及决策支持。在银行实际中数据质量管理的应用场景主要包括数……查看详情

    发布时间:2019.11.15来源:知乎浏览量:248次

  • 政府数据治理的国际经验与启示

    政府数据治理的国际经验与启示

    政府数据治理是当前政府信息管理研究的热点问题,对发达国家政府数据治理经验的总结有助于把握政府数据治理的普遍规律,推动我国政府数据的开发利……查看详情

    发布时间:2018.10.23来源:信息资源管理学报浏览量:173次

  • 数据治理之道是什么,要怎么做?

    数据治理之道是什么,要怎么做?

    数据治理需要体系建设:为发挥数据价值需要满足三个要素:合理的平台架构、完善的治理服务、体系化的运营手段。……查看详情

    发布时间:2021.05.14来源:亿信数据治理知识库浏览量:132次

  • 数据治理的十五个最佳实践

    数据治理的十五个最佳实践

    数据治理研究所(DGI)认为,它是一套切实可行的框架,帮助任何组织的各种数据利益相关方识别并满足其信息需求。DGI认为,企业不仅需要管理……查看详情

    发布时间:2020.07.31来源:知乎浏览量:150次

  • 如何保证所基于的数据具有高质量?

    如何保证所基于的数据具有高质量?

    基于数据决策的前提是数据可靠且相关,数据必须是“真实可信的”,否则“输出将是误导和无效的”。但是学校所收集的数据可能不完全,或者更新不及……查看详情

    发布时间:2020.10.31来源:知乎浏览量:127次

  • 治理和管理

    治理和管理

    以问责制为重点的数据管理定义是“确保数据相关工作根据通过治理建立的政策和实践来执行的一系列活动。”……查看详情

    发布时间:2019.03.18来源:亿信华辰浏览量:130次

  • 数据治理到底能治什么,怎么治

    数据治理到底能治什么,怎么治

    近年来,数据治理成为挖掘数据价值的重要手段和工具。随着大数据平台和工业互联网兴起,数据治理平台主要采用数据中台技术和微服务架构初步替代传……查看详情

    发布时间:2020.03.26来源:知乎浏览量:128次

  • 企业数据治理的坑你遇到过哪些?

    企业数据治理的坑你遇到过哪些?

    在这些年的数据治理实践当中有成功的经验,当然也经历过很多失败的教训,有些教训反反复复的出现…笔者一直在思考怎么避免这些问题,所以今天就跟……查看详情

    发布时间:2019.09.12来源:知乎浏览量:133次

  • 敏捷/精益数据治理最佳实践

    敏捷/精益数据治理最佳实践

    数据治理 的目标 是确保组织内的质量,可用性,完整性,安全性和可用性。你对此的看法取决于你。许多传统的数据治理方法似乎在实践中都很困难,……查看详情

    发布时间:2018.12.18来源:数据治理浏览量:126次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议