大数据治理需要具备哪些能力和关键技术?

发布时间:2019.11.22来源:CSDN浏览量:214次标签:数据治理

在企业数据建设过程中,大数据治理受到越来越多的重视。从企业数据资产管理和提升数据质量,到自服务和智能化的数据应用,大数据治理的内容在不断发展和完善,其落地实施的过程中会遇到各种各样的难题和挑战。本篇文章通过分析大数据治理建设中的沟沟坎坎,总结出了大数据治理需要具备的能力和关键技术。

一、困难重重却充满光明的大数据治理发展之路
1、传统数据治理一直无法逃脱的魔咒
大数据治理从建设内容和实施目标上可以划分成不同的阶段,每个阶段完成不同的任务,随着阶段的递进,建设内容逐步加深,不同的企业切入点和诉求也各不相同。大致分为以下几个阶段:

摸家底阶段
内容:企业元数据梳理和采集
目标:构建企业数据资产库

建体系
内容:建立企业标准和质量提升体系
目标:提升数据质量

促应用
内容:自服务通道、构建企业知识图谱
目标:数据智能应用

然而,大数据治理建设之路并不是一帆风顺的,甚至可以说充满了各种问题和困难,如何管理企业级的数据资产、如何让业务积极参与到数据建设中来、如何降低数据治理的落地难度等一系列问题,一直困扰着数据治理的发展,传统数据治理的问题主要体现在以下几个方面

管理范围窄
要做数据治理首先要知道有哪些数据,传统的数据治理往往只管理了数据领域,很少关注业务、管理和开发相关的数据资产,数据管理范围比较窄,而且,受限于技术实现,即使在数据领域的数据资产也很难做到精确管理;

业务难结合
业务元数据的广泛缺失,导致业务人员无法使用技术性的元数据系统,元数据缺乏业务用户,使用者少;

应用场景缺
元数据被当成单独的系统,而不是广泛的技术基础,导致只关心元数据本身的应用场景;
技术不完善
在技术层面存储缺乏扩展性,采集自动程度不高,管理实时性不高。

2、自服务大数据治理是解决问题之道
自服务的大数据治理平台具备管理、开发、共享、使用等能力,通过自动、自助、智能化的大数据治理,能够实现对数据的找、供、用、治,从而一站式解决传统数据治理在大数据时代的各种难题,具体涉及到以下几个方面。    

建好数据管理体系,快速识别数据
自服务大数据治理平台可以实现有数据可管理。现在的企业数据资产繁杂众多,特别是建设大数据平台的企业,数据的类型、分布、实现技术、所属部门等都很繁杂,通过手工一点点梳理是不现实的,如何低成本、快速有效地将数据梳理和管理起来?这是做大数据治理遇到的第一个坎。

自服务大数据治理平台可以通过自动化手段,自动识别企业数据资产并标明数据方位和属性,建立业务能理解的数据服务目录。

建立数据治理体系,监控并快速发现问题

自服务大数据治理平台可以保障企业数据资产的质量。企业内数据环境复杂,很容易出现数据不一致、数据不及时、数据缺失等一系列问题,如何识别并快速定位数据问题?特别是针对海量数据,如何在不影响性能情况下找出问题数据?这是做大数据治理遇到的第二个坎。

通过自服务大数据治理平台建立和支撑起基于数据指标、质量检核、问题发现和监控的完善数据治理体系,从事前、事中和事后等各个环节规避、发现和解决数据问题,将能保证数据应用无后顾之忧。

二、大数据治理技术需要不断革新
数据治理的目标是把数据管起来、用起来、保证数据质量,这些目标离不开各种技术的支持,这些技术包括元数据自动采集和关联、数据质量的探查和提升、数据的自助服务和智能应用等。

1、管起来:数据资产的自动化采集、存储技术要实现大数据治理的资产管理,需要做足三个方面的工作:
采集:指从各种工具中,把各种类型的元数据采集进来。
存储:采集元数据之后需要相应的存储策略来对元数据进行存储,这需要在不改变存储架构的情况下扩展元数据存储的类型;
管理和应用:在采集和存储完成后,对已经存储的元数据进行管理和应用。

第一,针对数据资产的存储,模型体系规范为元数据管理提供了基础,通过模型管理可以实现统一稳定的元数据存储,统一的标准和规范能很好地解决通用性和扩展性。

传统数据资产管理采用CWM规范进行数据资产存储设计,该规范提供了一个描述相关数据信息元数据的基础框架,并为各种元数据之间的通信和共享提供了一套切实可行的标准。但是,随着元数据管理范围的不断扩大,CWM规范已经不能满足通用的元数据管理需求,针对微服务、业务等也需要一套规范支撑。MOF规范位于模型体系最底层,可以为元数据存储提供统一的管理理论基础。

第二,元数据管理第二个核心问题是解决各类元数据的采集,由于元数据类型多种多样,而且在不断增加,所以,如何以最小代价,快速纳入管理新类型元数据的能力,是元数据管理的核心。

采用可插拔的适配器方式实现元数据的采集是一个很好的选择。其中,数据采集适配器应支持各类数据源的采集,当有一个新的数据源需要接入的时候,只需按照规范快速开发一套针对性的适配器,就能实现新类型元数据的纳入管理。

第三,与人工相比,技术的最突出特点是速度快和精确。因此,如何通过技术手段精确地获取数据资产是关键,特别是元数据关系,一般都存在于模型设计工具、ETL工具,甚至开发的SQL脚本中,因此需要通过工具组件解析(接口、数据库)、SQL语法解析等手段完成关系的获取和建立。准确解析后的关系,还需要通过直观的关系图展现出来。

2、有保障:数据质量探查和提升技术
通过大数据治理来提升数据质量的过程中,涉及到很多环节、工作和技术,其中包括:通过合理的技术找出数据问题并找到问题数据;从各个维度监控数据问题,并能通过最直观和快捷的方式反馈给相关责任人;实现问题发现、认责、处理、归档等数据问题的闭环解决流程等。中间主要涉及到以下两个方面:

第一,要想及时全面地找到问题数据,不仅要关注关键点,还要有合适的方法。数据最容易出现质量问题的地方就是数据集成(流动)点,例如:性别在单系统中,有1和0或者男和女表示都行,但是系统间集成时就会有问题。因此,解决数据质量的关键,就在于在集成点检查数据质量。另外,针对大数据量的数据质量检查,即要保证实时性,也要保证不影响业务系统的正常运行,因此在对特别大的数据量进行检查时,要采用抽样检查的方式。

第二,数据问题发现后,还要直观地将数据问题展现出来并及时通知相关人员。因此大数据治理平台应提供实时、全面的数据监控,实现多维度实时的数据资产信息展示:
从作业、模型、物理资源等各方面进行全面的数据资产盘点;
对数据及时性、问题数据量等方面的数据健康环境进行全面的预警。

3、用起来:自助化数据服务构建技术
大数据治理的最终目标是为最终用户提供数据,这需要快速找到数据,并快速建立数据交换的通道。
知识图谱是一种非常好用、直观的数据应用方式。人工智能的知识图谱构建,可以从以下步骤考虑:
基于企业元数据信息,通过自然语言处理、机器学习、模式识别等算法,以及业务规则过滤等方式,实现知识的提取;
以本体形式表示和存储知识,自动构建成起资产知识图谱;
通过知识图谱关系,利用智能搜索、关联查询等手段,为最终用户提供更加精确的数据。
基于元数据的自助数据服务开发,可以简单快速地建立数据通道。通过自助化的数据生产线,数据使用方(业务人员)大大减少了对开发人员依赖,80%以上的数据需求,都能通过自己进行整合开发,最终获取数据。让所有用数据的人能方便得到想要的数据。其中,提供所需数据的自助查询能力、自动生成数据服务、及时稳定的获得数据通道、保证数据安全是实现自助化的大数据生产线的四个关键点。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据交换管理—企业数据上链的起点

    数据交换管理—企业数据上链的起点

    随着数据体量的增长,大数据处理、大数据应用分析的门槛逐渐提高,社会普遍开始重视数据安全和隐私。目前,数据交换共享平台已成为政府和企业在系……查看详情

    发布时间:2020.08.11来源:知乎浏览量:160次

  • 关于数据治理的十件事

    关于数据治理的十件事

    数据治理是我们现在遇到的众多热门词汇之一。有人可能会说这是炒作,但我不这么认为。出于许多好的理由,这是我们的首要考虑,其中一些我们在下面……查看详情

    发布时间:2018.12.18来源:数据治理浏览量:169次

  • 2019年十大数据治理预测

    2019年十大数据治理预测

    去年见证了数据治理的觉醒 - 或者正如“ 华尔街日报” 所说的那样,“全球数据治理计算”。数据引人瞩目,从而导致创伤 - 从Face……查看详情

    发布时间:2018.12.19来源:亿信华辰浏览量:166次

  • 应用系统的数据治理一些关注点

    应用系统的数据治理一些关注点

    现在互联网公司业务发展都是非常飞速,当业务发展到一定规模,就得考虑如何去做服务治理,大家的重心一般放在微服务的应用架构设计层面,往往比……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:219次

  • 从数据中台的演进之路看未来发展,你需要是中台吗

    从数据中台的演进之路看未来发展,你需要是中台吗

    随着数据中台越来越火,很多企业纷纷建起了自己的数据中台,数据中台一下子火爆起来,越来越多的人开始了解中台,很多人就会存在疑问,数据中台到……查看详情

    发布时间:2020.08.26来源:小亿浏览量:128次

  • 大数据资产管理总体框架概述

    大数据资产管理总体框架概述

    随着大数据时代的来临,对数据的重视提到了前所未有的高度,“数据即资产”已经被广泛认可。数据就像企业的根基,是各企业尚待发掘的财富,即将被……查看详情

    发布时间:2020.08.28来源:知乎浏览量:140次

  • 数据科学趋势在2019年

    数据科学趋势在2019年

    在谈到2019年要关注的主要数据科学趋势时,Kaggle的联合创始人兼首席执行官Anthony Goldbloom 预测,很快数据中心将……查看详情

    发布时间:2019.01.04来源:数据治理浏览量:100次

  • 数据交换标准是什么

    数据交换标准是什么

    目前,国内采用软件管理的企业众多,有的企业自己开发管理软件、有的购买软件厂商的产品。但是它们采用的数据库平台和数据库结构各不相同。不同企……查看详情

    发布时间:2020.08.12来源:小亿浏览量:120次

  • 大数据治理的核心要素有哪些

    大数据治理的核心要素有哪些

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。数据的格……查看详情

    发布时间:2019.10.21来源:知乎浏览量:151次

  • 数据治理和业务转型

    数据治理和业务转型

    数字化转型仍然是依赖数据的核心业务计划。最初,数据功能侧重于监管合规性,然而,许多执行团队现在希望看到持续创新和首席数据官的结果,为公司……查看详情

    发布时间:2019.02.25来源:亿信华辰浏览量:145次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议