企业做好数据治理才能更快更好地推进数字化转型

发布时间:2019.12.12来源:知乎浏览量:107次标签:数据治理

数据治理之“困”
在谈到当前的数据治理之“困”时,主要有四方面:

第一,存在信息孤岛,有数不能用。当前,金融业数据治理过程中普遍存在“不愿、不敢、不能”共享的问题,导致海量数据散落在众多机构和信息系统中,形成一个个“数据烟囱”。一是不愿共享,多数机构都将数据作为战略性资源,认为拥有数据就拥有客户资源和市场竞争力,主观上不愿意共享数据;与之类似,机构内部数据权属分割,数据所有权和事权密切相关,部门宁愿将数据“束之高阁”,也不愿轻易拿出来共享。二是不敢共享,部分金融数据具有一定敏感性,涉及用户个人隐私、商业秘密甚至国家安全,数据共享可能存在法律风险,客观上给机构间共享数据带来障碍。三是不能共享,由于各机构数据接口不统一,不同机构的数据难以互联互通,严重阻碍数据开放共享,导致数据资产相互割裂、自成体系。

第二,数据质量不高,有数不好用。金融科技背景下,高质量数据成为金融服务与创新的重要基础,也是大数据提升金融精准施策能力的关键前提。然而,当前金融业整体数据质量不高现象依然突出,给数据深入挖掘与高效应用带来困难。在完整准确性方面,由于缺乏统一的数据治理体系,有些金融机构在数据采集、存储、处理等环节可能存在不科学、不规范等问题,导致错误数据、异常数据、缺失数据等“脏数据”产生,无法确保数据的完整性和准确性。在一致性方面,由于业务条线繁杂、业务种类多样,多个部门往往数据采集标准不一、统计口径各异,同一数据源在不同部门的表述可能完全不同,看似相同的数据实际含义也可能大相径庭,数据一致性难以保障。这给全局数据建模、分析、运用造成障碍,数据挖掘效果大打折扣。

第三,融合应用困难,有数不会用。金融数据来源众多、体量庞大、结构各异、关系复杂。从如此繁杂的海量金融数据中挖掘高价值、关联性强的高质量数据,需要高效的信息技术支撑和可靠的基础设施保障。然而,部分金融机构科技研发投入相对不足、科技人员占比失调,利用数据建模分析解决实际问题的能力有待提高。信息资源利用大多停留在表面,数据应用尚不深入、应用领域相对较窄、数据与场景融合不够,导致数据之“沙”难以汇聚成“塔”,海量数据资源无法盘活,数据潜力得不到充分释放。

第四,治理体系缺失,有数不善用。我们常说,“技术本身是中性的,技术运用的善恶完全取决于人”,这一结论对数据同样适用。科技要向善,数据也同样要向善。然而,由于法律法规尚不健全、数据治理体系还不完善、机构合规意识不足,数据“不善用”的问题较为突出。从业机构违法违规成本低,为谋求商业利益而置现有管理规定于不顾,过度采集数据、违规使用数据、非法交易数据等问题屡见不鲜。例如,某些APP、网站,用户不授权提供手机号、通讯录、地理位置等信息,就无法继续使用和浏览,通过“服务胁迫”来达成“数据绑架”。此外,部分机构数据保护意识、内部管理、技防能力薄弱,数据泄露事件时有发生,用户成为“透明人”,电信欺诈、骚扰电话、暴力催收等屡禁不止,严重侵害用户权益。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 一文搞懂数据质量问题及对应的解决办法

    一文搞懂数据质量问题及对应的解决办法

    通过数据分析、数据评估、数据清洗、数据监控、错误预警等内容,解决数据质量问题,使数据的质量得以改善,使其满足数据需求方对数据质量的规则要……查看详情

    发布时间:2019.11.05来源:知乎浏览量:1236次

  • 银行自身要提升数据治理能力

    银行自身要提升数据治理能力

    数字经济对金融服务的模式也提出了新的要求,银行必须依托科技支撑,加快和深化数字化转型,带动风控模式的改革创新。银行还需要着力于构建其自身……查看详情

    发布时间:2019.10.29来源:知乎浏览量:186次

  • 了解变更治理与数据管理实践

    了解变更治理与数据管理实践

    组织实施变革,为内部利益相关者或股东创造价值和利益。通常,价值创造只不过是在优化风险的同时享受理想资源成本带来的好处。……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:159次

  • 数据治理和当今的新数据目标

    数据治理和当今的新数据目标

    尽管实施全面的治理计划似乎令人生畏,但拥有有效数据治理策略和MDM解决方案的公司不断寻找新方法从数据中提取价值。……查看详情

    发布时间:2019.03.25来源:亿信华辰浏览量:124次

  • 使用数据治理指导数据传输

    使用数据治理指导数据传输

    在过去几年中,我们一直迷恋于大量数据以及我们创建和收集新数据类型和来源的能力。……查看详情

    发布时间:2019.01.16来源:亿信华辰浏览量:126次

  • 数据治理 定义,挑战和最佳实践

    数据治理 定义,挑战和最佳实践

    数据治理构成了公司范围数据管理的基础,可以有效地使用可信赖的数据。有效的数据管理是一项需要集中控制机制的重要任务。 为了帮助最终用户更……查看详情

    发布时间:2019.02.20来源:数据治理浏览量:182次

  • 构建有效的数据科学团队

    构建有效的数据科学团队

    随着数据科学和人工智能几乎进入阳光下的每个行业,建立一个能够建立成功的AI项目的团队的挑战也是如此。对统计学家,程序员和沟通者完美融合的……查看详情

    发布时间:2019.03.15来源:亿信华辰浏览量:159次

  • 企业数据标准管理的内容

    企业数据标准管理的内容

    笔者理解:数据标准是一套由管理制度、管控流程、技术工具共同组成的体系,是通过这套体系的推广,应用统一的数据定义、数据分类、记录格式和转换……查看详情

    发布时间:2020.11.13来源:知乎浏览量:133次

  • 98%的企业备战数据治理,尚未入局的你还在等什么

    98%的企业备战数据治理,尚未入局的你还在等什么

    UBM近日发布了一份2018企业数据治理白皮书。白皮书中分析了数据治理的现状:虽然越来越多的企业(尤其是业务部门及IT部门)逐渐开始关注……查看详情

    发布时间:2019.05.30来源:亿信华辰浏览量:137次

  • 关于数据标准认识的几个误区

    关于数据标准认识的几个误区

    数据标准这个词,最早是在金融行业,特别是银行业的数据治理中开始使用的。数据标准工作一直是数据治理中的重要基础性内容。但是对于数据标准,不……查看详情

    发布时间:2020.11.13来源:知乎浏览量:132次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议