企业做好数据治理才能更快更好地推进数字化转型

发布时间:2019.12.12来源:知乎浏览量:18次标签:数据治理

数据治理之“困”
在谈到当前的数据治理之“困”时,主要有四方面:

第一,存在信息孤岛,有数不能用。当前,金融业数据治理过程中普遍存在“不愿、不敢、不能”共享的问题,导致海量数据散落在众多机构和信息系统中,形成一个个“数据烟囱”。一是不愿共享,多数机构都将数据作为战略性资源,认为拥有数据就拥有客户资源和市场竞争力,主观上不愿意共享数据;与之类似,机构内部数据权属分割,数据所有权和事权密切相关,部门宁愿将数据“束之高阁”,也不愿轻易拿出来共享。二是不敢共享,部分金融数据具有一定敏感性,涉及用户个人隐私、商业秘密甚至国家安全,数据共享可能存在法律风险,客观上给机构间共享数据带来障碍。三是不能共享,由于各机构数据接口不统一,不同机构的数据难以互联互通,严重阻碍数据开放共享,导致数据资产相互割裂、自成体系。

第二,数据质量不高,有数不好用。金融科技背景下,高质量数据成为金融服务与创新的重要基础,也是大数据提升金融精准施策能力的关键前提。然而,当前金融业整体数据质量不高现象依然突出,给数据深入挖掘与高效应用带来困难。在完整准确性方面,由于缺乏统一的数据治理体系,有些金融机构在数据采集、存储、处理等环节可能存在不科学、不规范等问题,导致错误数据、异常数据、缺失数据等“脏数据”产生,无法确保数据的完整性和准确性。在一致性方面,由于业务条线繁杂、业务种类多样,多个部门往往数据采集标准不一、统计口径各异,同一数据源在不同部门的表述可能完全不同,看似相同的数据实际含义也可能大相径庭,数据一致性难以保障。这给全局数据建模、分析、运用造成障碍,数据挖掘效果大打折扣。

第三,融合应用困难,有数不会用。金融数据来源众多、体量庞大、结构各异、关系复杂。从如此繁杂的海量金融数据中挖掘高价值、关联性强的高质量数据,需要高效的信息技术支撑和可靠的基础设施保障。然而,部分金融机构科技研发投入相对不足、科技人员占比失调,利用数据建模分析解决实际问题的能力有待提高。信息资源利用大多停留在表面,数据应用尚不深入、应用领域相对较窄、数据与场景融合不够,导致数据之“沙”难以汇聚成“塔”,海量数据资源无法盘活,数据潜力得不到充分释放。

第四,治理体系缺失,有数不善用。我们常说,“技术本身是中性的,技术运用的善恶完全取决于人”,这一结论对数据同样适用。科技要向善,数据也同样要向善。然而,由于法律法规尚不健全、数据治理体系还不完善、机构合规意识不足,数据“不善用”的问题较为突出。从业机构违法违规成本低,为谋求商业利益而置现有管理规定于不顾,过度采集数据、违规使用数据、非法交易数据等问题屡见不鲜。例如,某些APP、网站,用户不授权提供手机号、通讯录、地理位置等信息,就无法继续使用和浏览,通过“服务胁迫”来达成“数据绑架”。此外,部分机构数据保护意识、内部管理、技防能力薄弱,数据泄露事件时有发生,用户成为“透明人”,电信欺诈、骚扰电话、暴力催收等屡禁不止,严重侵害用户权益。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 医疗保健数据治理:预测是什么?

    医疗保健数据治理:预测是什么?

    医疗保健数据治理已经远超过应用程序只是满足合规性标准。医疗费用始终是讨论的主题,健康保险状况和“平价医疗法案”(ACA)等政策也是如此。……查看详情

    发布时间:2018.12.03来源:迈克尔帕斯托雷浏览量:14次

  • 在数据智能时代企业面对庞大的数据量如何高效进行数据治理?

    在数据智能时代企业面对庞大的数据量如何高效进行数据治理?

    在数据智能时代,对企业而言,“数据驱动业务”或者“数据即是业务”的理念逐渐成为业界的一种共识。然而,数据孤岛、数据标准不统一等问题在一定……查看详情

    发布时间:2020.06.23来源:知乎浏览量:13次

  • 区块链是金融数据治理的天然工具

    区块链是金融数据治理的天然工具

    一、从金融数据管理到金融数据治理进入“大数据时代”,不仅催生更多金融业态,数据体量更是呈现爆炸式增长。如何将金融……查看详情

    发布时间:2019.01.07来源:亿信华辰浏览量:25次

  • 浅谈企业数据治理的实践

    浅谈企业数据治理的实践

    在大数据时代,数据治理是所有的拥有大量数据的公司的巨大的挑战。没有数据,企业缺乏用于做决策的数据的支持。可是有了越来越多的数据,很多情况……查看详情

    发布时间:2019.09.04来源:知乎浏览量:35次

  • 数据治理面对的挑战有哪些

    数据治理面对的挑战有哪些

    随着企业数据量的增长,大数据平台需要投资扩容,但大量的存量应用依赖的数据也在同步增长,因此也需要扩容,当然这份冗余的数据会越来越大。……查看详情

    发布时间:2022.05.07来源:小亿浏览量:48次

  • 数据治理与数据质量有何不同?

    数据治理与数据质量有何不同?

    当下是一个大数据的时代,有越来越多的企业开始应用大数据来创造价值,为了能够充分的利用数据价值,企业需要对数据进行管理,当我们听到数据管理……查看详情

    发布时间:2019.07.26来源:知乎浏览量:30次

  • 数据整理——大数据治理的关键技术

    数据整理——大数据治理的关键技术

    数据是政府、企业和机构的重要资源。数据治理关注数据资源有效利用的众多方面,如数据资产确权、数据管理、数据开放共享、数据隐私保护等。从数据……查看详情

    发布时间:2019.11.21来源:CSDN浏览量:77次

  • 大数据治理需要解决哪些问题?

    大数据治理需要解决哪些问题?

    随着云时代的来临,大数据也吸引了越来越多的关注。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大……查看详情

    发布时间:2018.10.15来源:数邦客浏览量:36次

  • 如何全面解决数据问题?看这里就全知道!

    如何全面解决数据问题?看这里就全知道!

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。数据的格……查看详情

    发布时间:2019.09.04来源:知乎浏览量:30次

  • 数据湖治理最佳实践

    数据湖治理最佳实践

    如果没有最佳实践,存储将变得无法维护。自动化数据质量,生命周期和隐私可以持续清理/移动湖中的数据。……查看详情

    发布时间:2019.03.11来源:亿信华辰浏览量:30次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议