有效数据治理的6大原则

发布时间:2019.10.17来源:知乎浏览量:7次标签:数据治理

有效数据治理的6大原则 
如果你常常对数据准确性而烦恼,大部分时间都用于处理数据而不是对业务进行思考分析的话,那么你需要好好对数据进行治理了。
有效数据治理的6大原则
一、为什么要进行数据治理
不知道你是否有这样的感受,看到数据后,一脸懵逼,不知道各个表和字段代表什么意思,再看看别的同事写的SQL,一条SQL语句有几百行,各种表关联,然后问了其中一个同事,他说“别提了,数据都不准,我快被数据折磨死了!”,此时你是不是“想死”!欲哭无泪……
究其背后的原因,是因为负责的人只是问题使然,哪有问题哪里去补,没有整体的统筹规划,一步错,步步错,数据最后是越来越重,查询越来越复杂,数据准确性还没有人敢打保票,同时修复的难度也大大增加。

二、如何进行数据治理
如果要想将数据治理好的话,需要遵循以下六大原则、合理制定数据中间表模型以及埋点采集到应用全流程的把控。

1. 六大原则

原则1:关键概念多方共识
关键概念若涉及多方,比如成交客户的定义,要确保公司内部和客户相关的所有业务人员理解一致。
你或许会说,成交客户还不好理解么,就是购买了我公司产品且签署合同的用户就是一个成交客户,但是实际情况远非如此,笔者当时处理该块的业务时,问不同的业务人员得到的结果都不一样,这样就造成了数据指标统计的歧义甚至数据的不准确。
当一个合同主体变换名称(含工商注册名称变更、更换签约公司等),那么这个客户算一个成交客户吗?
同一个 集团/公司 下,不同的 子公司/业务线/部门 用同一个名字签署多个不同合同,属于单个成交客户还是多个成交客户?
当合同还在「待确认」或未拿到合同编号时,如果客户运营人员已经开始服务客户,那么这个客户算一个成交客户吗?……

原则2:某个类型的值经常发生变动,则需要冗余一个通用字段冗余值
笔者是深受其害,以前每个月底都需要找开发、业务人员对一遍数据,举个例子:
查询原始指标:soure_type为A,B的任务产出的金币数额为消费指标,SQL已针对该指标做了类型筛选。某一天业务运营人 员上线新的任务,C类型的任务会贡献金币流水,但是开发未告知数据人员,导致原来的关键指标数值出现差错。
处理过数据的同学都知道,某个指标的实现可能和其它几个关键指标相关,那么该指标的异常排查就需要逐个检查是哪个相关指标出问题了,查找到原因可能2,3天的时间就没了,但如果事先开发人员冗余了一个通用字段代表该类消费指标,那么后续不管业务人员上线多少个消费类型的任务,都不会对原来的指标产生影响。

原则3:每个实体都有唯一、不变的ID,最好没有实际意义
一是为了实体的唯一性,二是为了表关联或更新时不受业务的影响。

原则4:涉及协作的数据,发现问题要从修改源头做起,保证下一次拿到正确的数据
协作的数据可以说是一个串联的过程,源头的数据会逐层影响下层的数据,不要为了一时方便,只修改目前发现问题的地方,要从修改源头做起,方便他人即方便自己。

原则5:编写操作清单,操作前请三思
数据间存在关联,把数据间的关联关系陈列清楚、注意事项标注清楚,操作前一一核对,小数据量验证无错后,大数据量执行。

原则6:系统工程的方法管理数据,尽可能使用系统,监控数据错误并及时修复。
将使用数据的相关方都画在一张系统循环图中,观察数据错误产生于系统哪个环节,如何影响后续各个环节,避免恶性循环的产生。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 大数据治理平台建设过程

    大数据治理平台建设过程

    分为三个层次,分别为战略与治理保障、大数据管理和大数据应用与服务,其中战略与治理保障包括,数据战略规划与评估,数据治理组织与职责、数据制……查看详情

    发布时间:2019.08.19来源:CSDN浏览量:17次

  • 从数据资产管理出发,看数据治理的最优架构如何搭建?

    从数据资产管理出发,看数据治理的最优架构如何搭建?

    通过数据治理工作的开展,数据变得可信且易于理解,并能有效地支撑业务人员的决策分析工作,数据资产也变得更易用,更有价值。……查看详情

    发布时间:2021.04.15来源:亿信数据治理知识库浏览量:7次

  • 为什么要进行数据交换

    为什么要进行数据交换

    企业大量的IT投资建立了众多的信息系统,但是随着信息系统的增加,各自孤立工作的信息系统将会造成大量的冗余数据和业务人员的重复劳动。企业急……查看详情

    发布时间:2020.08.10来源:知乎浏览量:3次

  • 为什么你应该有一个数据治理策略

    为什么你应该有一个数据治理策略

    有效的数据治理也是一个持续的过程。政策定义,审查,调整和审计以及合规审查和质量控制都会作为数据治理生命周期经常受到影响或重复。因此,数据……查看详情

    发布时间:2019.03.08来源:亿信华辰浏览量:8次

  • 建立统一的数据交换平台实现各部门的数据共享

    建立统一的数据交换平台实现各部门的数据共享

    要实现各部门的数据共享,必须先建立统一的数据交换平台,通过交换平台实现各异构数据库之间的数据集成,实现原有各业务系统在数据级集成,保证异……查看详情

    发布时间:2020.08.21来源:知乎浏览量:3次

  • 实施数据治理 - 学到3个主要经验教训

    实施数据治理 - 学到3个主要经验教训

    尽管数据治理在开发过程中可能会有些流动和迭代,但遵循最佳实践并设计精心定位的路线图有助于确保成功。……查看详情

    发布时间:2018.12.21来源:亿信华辰浏览量:7次

  • 探索数据生命周期管理的五个阶段

    探索数据生命周期管理的五个阶段

    企业并不总是需要所有数据 - 特别是当数据被认为过时时。但是,诉讼,审计或其他突发事件可以使其快速检索变得至关重要。考虑到这种可能性,许……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:6次

  • 银行数据治理包括哪几个方面

    银行数据治理包括哪几个方面

    从《银行业金融机构数据治理指引》相应章节可看出, 数据治理/管理的核心是基础数据、衍生数据,以及产生与 应用这些数据的组织架构、运行机制……查看详情

    发布时间:2021.04.06来源:数据治理研究院浏览量:13次

  • 2019年的数据前景如何

    2019年的数据前景如何

    这三个与数据相关的趋势今年值得关注。 公司喜欢技术堆栈所有层的“即服务”模式,从云供应商提供的基础架构到完整的SaaS应用程序。但是……查看详情

    发布时间:2019.01.07来源:数据治理浏览量:3次

  • 大数据时代下金融数据治理的问题

    大数据时代下金融数据治理的问题

    数据治理是一套完整的制度、指引和规范,用于统筹人员、流程以及技术等要素,使得商业银行能将数据作为企业的重要资产而有效利用,其核心内容是统……查看详情

    发布时间:2019.10.17来源:知乎浏览量:4次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议