数据治理金融行业解决方案

发布时间:2019.08.26来源:知乎浏览量:145次标签:数据治理

我国银行数据现状
1、缺乏数据梳理,造成行领导看到的数据相互冲突和矛盾
2、业务职能不清晰或相互重叠,观察数据视角不尽相同,缺少数据标准与业务统一定义,语轨不一致
3、IT架构中中都是以部门级应用为主(如计财、资金计划部等),缺乏从大的管理职能(财务、风险、运营等)综4、合方面的数据整合、数据标准和统一业务定义
5、由于业务系统输入的随意性,导致部分关键业务数据质量较差

由于全行的数据散落在各个业务系统中,没有进行有效整合,形成竖井式架构,造成多个信息孤岛,整体架构缺少一个稳定的、抗源变化的保存最细粒度历史数据的数据层。无法支撑未来共享性应用。

业务表现
信息孤岛
数据冗余
共享性差
历史数据缺失
问题
数据分散,难以管理
没有一个稳定的,抗源变化的数据层

数据治理

缺少统一的数据标准
业务表现
各系统存在冗余数据
各系统存在业务含义一致,名称定义不一致的属性
各系统存在含义不一致,名称定义一致的情况
业务代码定义混乱
问题
重复投入
数据不一致、不准确
难以利用和管理
各系统数据难以共享

数据治理目标
1、数据标准规划化--规范化管理构成数据平台的业务和技术基础设施,包括数据管控制度与流程规范文档、信息项定义等。
2、数据关系脉络化--实现对数据间流转、依赖关系的影响和血缘分析
3、数据质量度量化--全方位管理数据平台的数据质量,实现可定义的数据质量检核和维度分析,以及问题跟踪。
4、数据服务电子化--为数据平台提供面向业务用户的服务沟通渠道。

数据治理方法论
数据治理

数据治理成熟度评估模型

数据治理
银行数据治理如何实施

数据治理领域包括但不限于数据标准、数据质量、元数据、数据模型、数据分布、数据存储、数据交换、数据生命周期、数据安全等内容。数据治理领域是随着银行业务发展变化的,领域之间的关系也需要不断深入挖掘和分析,最终将形成一个互相协同与验证的领域网,全方位地提升数据治理成效。

数据治理解决方案

睿治数据治理平台是我公司完全自主研发的、开创性的、一站式综合数据治理整体解决方案。睿治是全国唯一实现了数据治理场景全覆盖的突破性产品,九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,以创新的方式保证了企业的业务数据在采集、汇总、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性,全面为客户量身打造符合自身特征的数据治理体系。

数据治理

睿治始终站在国内顶尖梯队,广泛应用了MQ、分布式计算、zookeeper等最新技术。同时引领国内行业发展趋势:
1、数据质量自动探查,内置常规数理统计算法支持绑定机器学习算法;
2、数据关系智能构建,基于存储过程、sql、数据库定义,自动理解数据之间的关系;
3、资产目录主动感知,活化更新等先进技术,确保成为当之无愧的领头羊。 

睿治具备难以超越的核心竞争力:

1、睿治各模块高度融合,各功能可互相调用,全程可视化操作,打通数据治理各环节;
2、先进的产品设计理念,充分依照国际规范、标准,具有国内先进水平;
3、丰富的项目实践经验,深耕大数据领域十多年,着眼于打造数据全生命周期的智能化产品线;
4、专业的服务保障团队,遍布全国,及时响应。 

睿治平台致力于打造“平台化、可视化、智能化”数据治理解决方案。
1、架构统一,基于全新Spring Boot+EUI开发,微服务架构,延展性强;
2、全界面操作,“零”表达式治理,实现治理全过程可视化,全角色可视化;
3、内置智能算法,多场景自动化、智能化治理。 

睿治的通用扩展性之高,广受好评。平台基于各行业数据共性,采用成熟模块化设计理念,实现各模块功能各行业应用场景普遍适用;平台功能全面,灵活组装,可对数据从创建到消亡全过程监控和治理;平台提供丰富的服务接口,内置脚本支持,全面满足集成、扩展需要。  
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理运作:差距

    数据治理运作:差距

    十年前,顾问必须提高认识并教育客户治理;突出监管风险,合规要求,处罚等。这更像是出售保险产品。今天,全球组织都了解数据治理(DG)是什么……查看详情

    发布时间:2018.12.27来源:亿信华辰浏览量:112次

  • 理解数据治理

    理解数据治理

    专注于商业智能(bi)市场,深入了解组织在数据管理策略方面所面临的一些共同挑战。……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:108次

  • 人工智能治理应当起步

    人工智能治理应当起步

    人工智能正在以前所未有的速度发展,大大超出了人们的预期,目前全球活跃人工智能企业达到了5000家左右。据相关预测,到2022年全球人工智……查看详情

    发布时间:2019.10.18来源:中国经营报浏览量:92次

  • 如何有效的进行数据治理和数据管控

    如何有效的进行数据治理和数据管控

    大数据时代的到来,让政府、企业看到了数据资产的价值,并快速开始探索应用场景和商业模式、建设技术平台。但是,如果在大数据拼图中遗忘了数据治……查看详情

    发布时间:2019.01.03来源:数据改变生活浏览量:116次

  • 基准治理基准:见解与机遇

    基准治理基准:见解与机遇

    在一个品牌是越来越重要的战略资产需要非营利组织进行复杂管理的世界中,这些似乎是基金会支持其行列的重要机会领域。……查看详情

    发布时间:2019.03.15来源:亿信华辰浏览量:96次

  • 数据分析加数据治理-让数据清澈如水

    数据分析加数据治理-让数据清澈如水

    在如今数据大浪潮下,如果您的业务很多,那么它就会大量堆积并且产生新的问题。我们生活在一个数据驱动的世界里。数据推动了我们从不同地方获得的……查看详情

    发布时间:2019.08.30来源:浏览量:134次

  • 为正在进行的数据治理提供资金

    为正在进行的数据治理提供资金

    我们不会在这里更详细地讨论这些选项; 它们遵循与为数据治理计划的设计提供资金时所讨论的相同的一般模式。但是,值得注意的是,使数据治理依赖……查看详情

    发布时间:2019.03.18来源:亿信华辰浏览量:117次

  • 数据治理如何支持数据隐私合规性

    数据治理如何支持数据隐私合规性

    已经具备数据治理功能的组织具有坚实的领先优势,可以利用它来促进数据隐私合规性的许多方面。……查看详情

    发布时间:2019.02.15来源:CIO浏览量:117次

  • 企业数据资产管理应该如何做?

    企业数据资产管理应该如何做?

    定义与提出:国外对“数据资产管理”的定义为:数据资产管理是规划、控制和提供数据及信息资产的一组业务职能,包括开发……查看详情

    发布时间:2020.08.14来源:知乎浏览量:133次

  • 数据管理与数据治理的区别

    数据管理与数据治理的区别

    数据管理和数据治理有很多地方是互相重叠的,它们都围绕数据这个领域展开,因此这两个术语经常被混为一谈。此外,每当人们提起数据管理和数据治理……查看详情

    发布时间:2019.08.27来源:DAMS浏览量:115次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议