数据治理金融行业解决方案

发布时间:2019.08.26来源:知乎浏览量:53次标签:数据治理

我国银行数据现状
1、缺乏数据梳理,造成行领导看到的数据相互冲突和矛盾
2、业务职能不清晰或相互重叠,观察数据视角不尽相同,缺少数据标准与业务统一定义,语轨不一致
3、IT架构中中都是以部门级应用为主(如计财、资金计划部等),缺乏从大的管理职能(财务、风险、运营等)综4、合方面的数据整合、数据标准和统一业务定义
5、由于业务系统输入的随意性,导致部分关键业务数据质量较差

由于全行的数据散落在各个业务系统中,没有进行有效整合,形成竖井式架构,造成多个信息孤岛,整体架构缺少一个稳定的、抗源变化的保存最细粒度历史数据的数据层。无法支撑未来共享性应用。

业务表现
信息孤岛
数据冗余
共享性差
历史数据缺失
问题
数据分散,难以管理
没有一个稳定的,抗源变化的数据层

数据治理

缺少统一的数据标准
业务表现
各系统存在冗余数据
各系统存在业务含义一致,名称定义不一致的属性
各系统存在含义不一致,名称定义一致的情况
业务代码定义混乱
问题
重复投入
数据不一致、不准确
难以利用和管理
各系统数据难以共享

数据治理目标
1、数据标准规划化--规范化管理构成数据平台的业务和技术基础设施,包括数据管控制度与流程规范文档、信息项定义等。
2、数据关系脉络化--实现对数据间流转、依赖关系的影响和血缘分析
3、数据质量度量化--全方位管理数据平台的数据质量,实现可定义的数据质量检核和维度分析,以及问题跟踪。
4、数据服务电子化--为数据平台提供面向业务用户的服务沟通渠道。

数据治理方法论
数据治理

数据治理成熟度评估模型

数据治理
银行数据治理如何实施

数据治理领域包括但不限于数据标准、数据质量、元数据、数据模型、数据分布、数据存储、数据交换、数据生命周期、数据安全等内容。数据治理领域是随着银行业务发展变化的,领域之间的关系也需要不断深入挖掘和分析,最终将形成一个互相协同与验证的领域网,全方位地提升数据治理成效。

数据治理解决方案

睿治数据治理平台是我公司完全自主研发的、开创性的、一站式综合数据治理整体解决方案。睿治是全国唯一实现了数据治理场景全覆盖的突破性产品,九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,以创新的方式保证了企业的业务数据在采集、汇总、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性,全面为客户量身打造符合自身特征的数据治理体系。

数据治理

睿治始终站在国内顶尖梯队,广泛应用了MQ、分布式计算、zookeeper等最新技术。同时引领国内行业发展趋势:
1、数据质量自动探查,内置常规数理统计算法支持绑定机器学习算法;
2、数据关系智能构建,基于存储过程、sql、数据库定义,自动理解数据之间的关系;
3、资产目录主动感知,活化更新等先进技术,确保成为当之无愧的领头羊。 

睿治具备难以超越的核心竞争力:

1、睿治各模块高度融合,各功能可互相调用,全程可视化操作,打通数据治理各环节;
2、先进的产品设计理念,充分依照国际规范、标准,具有国内先进水平;
3、丰富的项目实践经验,深耕大数据领域十多年,着眼于打造数据全生命周期的智能化产品线;
4、专业的服务保障团队,遍布全国,及时响应。 

睿治平台致力于打造“平台化、可视化、智能化”数据治理解决方案。
1、架构统一,基于全新Spring Boot+EUI开发,微服务架构,延展性强;
2、全界面操作,“零”表达式治理,实现治理全过程可视化,全角色可视化;
3、内置智能算法,多场景自动化、智能化治理。 

睿治的通用扩展性之高,广受好评。平台基于各行业数据共性,采用成熟模块化设计理念,实现各模块功能各行业应用场景普遍适用;平台功能全面,灵活组装,可对数据从创建到消亡全过程监控和治理;平台提供丰富的服务接口,内置脚本支持,全面满足集成、扩展需要。  
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 大数据治理的语义方法

    大数据治理的语义方法

    正如Coyne所说:“数据治理正在成长为一套实践,软件和系统是其中不可或缺的一部分。但他们只是其中的一部分。您在更高层次上拥有的是实践和……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:33次

  • 什么是数据治理?

    什么是数据治理?

    可用性指数据可用、可信且有质量保证,不会因为分析结果的准确性造成偏差,从业者可以放心地根据数据结果做业务决策;完整性分为两个方面,一方面……查看详情

    发布时间:2019.11.01来源:知乎浏览量:29次

  • 数据治理的十五个最佳实践

    数据治理的十五个最佳实践

    数据治理研究所(DGI)认为,它是一套切实可行的框架,帮助任何组织的各种数据利益相关方识别并满足其信息需求。DGI认为,企业不仅需要管理……查看详情

    发布时间:2020.07.31来源:知乎浏览量:33次

  • 一文分享主数据治理

    一文分享主数据治理

    当前大多数公司都处于部门间,系统间不通的状态,即使通了也是有很多的不一致,很难达到统一标准,数出一孔,协作流畅的程度,在资源有限的情况下……查看详情

    发布时间:2022.06.15来源:互联网浏览量:82次

  • 云中的数据治理

    云中的数据治理

    IT中心,内部部署基础架构变得越来越复杂和昂贵,并且需要高技能的人力,因此企业现在将其IT和数据科学功能转移到云。云计算承诺提供低成本存……查看详情

    发布时间:2018.12.29来源:亿信华辰浏览量:40次

  • 数据治理,人工智能和医疗保健:令人兴奋的健康新世界

    数据治理,人工智能和医疗保健:令人兴奋的健康新世界

    随着AI变得越来越普遍,对数据治理的需求也在增加。这是一个由政府确定的问题,因为它最近宣布了一个监督大量数据集的道德小组。2017年1月……查看详情

    发布时间:2019.03.06来源:亿信华辰浏览量:51次

  • 各行业企业数据管理遇到的挑战

    各行业企业数据管理遇到的挑战

    目前业界并没有对其概念的统一标准定义,我们可以这么认为,数据治理从本质上看就是对一个机构(企业或政府部门)的数据从收集融合到分析管理和利……查看详情

    发布时间:2020.03.26来源:知乎浏览量:40次

  • 医疗数据治理在大数据分析中的作用

    医疗数据治理在大数据分析中的作用

    数据治理对医疗保健组织意味着什么?为什么在进行大数据分析之前掌握它至关重要?数据一直是医疗保健行业的生命线。从血压读数和手术记录到保险索……查看详情

    发布时间:2018.11.19来源:Thinkstock浏览量:34次

  • 使我们的国家数据资源现代化:永无止境的挑战

    使我们的国家数据资源现代化:永无止境的挑战

    澳大利亚统计局,包括其前身组织,已经为澳大利亚社区提供了超过110年的优质可靠数据。……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:35次

  • 敏捷/精益数据治理最佳实践

    敏捷/精益数据治理最佳实践

    数据治理 的目标 是确保组织内的质量,可用性,完整性,安全性和可用性。你对此的看法取决于你。许多传统的数据治理方法似乎在实践中都很困难,……查看详情

    发布时间:2018.11.20来源:数据治理浏览量:36次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议