数据治理金融行业解决方案

发布时间:2019.08.26来源:知乎浏览量:195次标签:数据治理

我国银行数据现状
1、缺乏数据梳理,造成行领导看到的数据相互冲突和矛盾
2、业务职能不清晰或相互重叠,观察数据视角不尽相同,缺少数据标准与业务统一定义,语轨不一致
3、IT架构中中都是以部门级应用为主(如计财、资金计划部等),缺乏从大的管理职能(财务、风险、运营等)综4、合方面的数据整合、数据标准和统一业务定义
5、由于业务系统输入的随意性,导致部分关键业务数据质量较差

由于全行的数据散落在各个业务系统中,没有进行有效整合,形成竖井式架构,造成多个信息孤岛,整体架构缺少一个稳定的、抗源变化的保存最细粒度历史数据的数据层。无法支撑未来共享性应用。

业务表现
信息孤岛
数据冗余
共享性差
历史数据缺失
问题
数据分散,难以管理
没有一个稳定的,抗源变化的数据层

数据治理

缺少统一的数据标准
业务表现
各系统存在冗余数据
各系统存在业务含义一致,名称定义不一致的属性
各系统存在含义不一致,名称定义一致的情况
业务代码定义混乱
问题
重复投入
数据不一致、不准确
难以利用和管理
各系统数据难以共享

数据治理目标
1、数据标准规划化--规范化管理构成数据平台的业务和技术基础设施,包括数据管控制度与流程规范文档、信息项定义等。
2、数据关系脉络化--实现对数据间流转、依赖关系的影响和血缘分析
3、数据质量度量化--全方位管理数据平台的数据质量,实现可定义的数据质量检核和维度分析,以及问题跟踪。
4、数据服务电子化--为数据平台提供面向业务用户的服务沟通渠道。

数据治理方法论
数据治理

数据治理成熟度评估模型

数据治理
银行数据治理如何实施

数据治理领域包括但不限于数据标准、数据质量、元数据、数据模型、数据分布、数据存储、数据交换、数据生命周期、数据安全等内容。数据治理领域是随着银行业务发展变化的,领域之间的关系也需要不断深入挖掘和分析,最终将形成一个互相协同与验证的领域网,全方位地提升数据治理成效。

数据治理解决方案

睿治数据治理平台是我公司完全自主研发的、开创性的、一站式综合数据治理整体解决方案。睿治是全国唯一实现了数据治理场景全覆盖的突破性产品,九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,以创新的方式保证了企业的业务数据在采集、汇总、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性,全面为客户量身打造符合自身特征的数据治理体系。

数据治理

睿治始终站在国内顶尖梯队,广泛应用了MQ、分布式计算、zookeeper等最新技术。同时引领国内行业发展趋势:
1、数据质量自动探查,内置常规数理统计算法支持绑定机器学习算法;
2、数据关系智能构建,基于存储过程、sql、数据库定义,自动理解数据之间的关系;
3、资产目录主动感知,活化更新等先进技术,确保成为当之无愧的领头羊。 

睿治具备难以超越的核心竞争力:

1、睿治各模块高度融合,各功能可互相调用,全程可视化操作,打通数据治理各环节;
2、先进的产品设计理念,充分依照国际规范、标准,具有国内先进水平;
3、丰富的项目实践经验,深耕大数据领域十多年,着眼于打造数据全生命周期的智能化产品线;
4、专业的服务保障团队,遍布全国,及时响应。 

睿治平台致力于打造“平台化、可视化、智能化”数据治理解决方案。
1、架构统一,基于全新Spring Boot+EUI开发,微服务架构,延展性强;
2、全界面操作,“零”表达式治理,实现治理全过程可视化,全角色可视化;
3、内置智能算法,多场景自动化、智能化治理。 

睿治的通用扩展性之高,广受好评。平台基于各行业数据共性,采用成熟模块化设计理念,实现各模块功能各行业应用场景普遍适用;平台功能全面,灵活组装,可对数据从创建到消亡全过程监控和治理;平台提供丰富的服务接口,内置脚本支持,全面满足集成、扩展需要。  
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业数据质量是数字化时代企业的重要资产

    企业数据质量是数字化时代企业的重要资产

    大数据的概念正在进一步渗透到各个行业与领域当中,随着企业业务增长和规模扩大,以及伴随着信息技术和相关基础设施的不断完善,在短短的几年内,……查看详情

    发布时间:2020.01.10来源:知乎浏览量:162次

  • 什么阻碍了数据治理更好的发展?

    什么阻碍了数据治理更好的发展?

    数据治理正迅速成为全球政策优先事项,这是正确的。已建立的利益和强大的公司正在以令人眼花缭乱的速度构建和重新构建关于数据治理的公众辩论,并……查看详情

    发布时间:2019.07.11来源:知乎浏览量:125次

  • 用于构建数据驱动型企业的敏捷数据治理基础

    用于构建数据驱动型企业的敏捷数据治理基础

    数据驱动型企业是现代企业的基石,良好的数据治理是关键的推动因素。……查看详情

    发布时间:2019.01.26来源:亿信华辰浏览量:147次

  • 数据质量管理趋势

    数据质量管理趋势

    进一步信息又可分为物理信息和语义信息两类,其中物理层面的信息反映基础的数据结构;语义信息属于进阶有含义的语义数据结构,反映人类的视角。……查看详情

    发布时间:2019.11.15来源:知乎浏览量:160次

  • 数据资产管理直面企业痛点

    数据资产管理直面企业痛点

    企业日常经营活动中积累的大量数据,除了支持业务流程运转之外,越来越多地被用于帮助企业提升管理决策效率、实现价值挖掘和业务创新。企业日常经……查看详情

    发布时间:2020.09.11来源:知乎浏览量:168次

  • 基于大数据的质量管理系统怎么选?

    基于大数据的质量管理系统怎么选?

    对于一个制造企业来说,生产是企业最大的动力,而生产质量也需要进行优化管理,一个好的质量管理会带给企业巨大的发展空间和利润价值。正因如此,……查看详情

    发布时间:2019.11.07来源:知乎浏览量:141次

  • 数据资产管理实践白皮书(2.0版)

    数据资产管理实践白皮书(2.0版)

    本白皮书版权属于中国信息通信研究院云计算与大数 据研究所,并受法律保护。转载、摘编或利用其它方式使用 本白皮书文字或者观点的,应注明……查看详情

    发布时间:2019.09.02来源:中国信息通信研究院云计算与大数据研究所浏览量:476次

  • 做好大数据治理才能建设好大数据平台

    做好大数据治理才能建设好大数据平台

    数据量不断的增加,对数据分析和管理带来了挑战,分析数据背后的价值也为企业发展,社会进步带来了机遇。因此各行各业开始建设大数据平台,大数据……查看详情

    发布时间:2019.08.15来源:知乎浏览量:169次

  • 大数据时代如何做好数据治理

    大数据时代如何做好数据治理

    企业在建制大数据平台的同时,对进入数据湖的数据进行梳理,并按照数据资产目录的形式对外发布。在发布数据资产之后,则对进出数据湖……查看详情

    发布时间:2018.12.10来源:数据治理浏览量:132次

  • 数据治理项目的实现需要的核心要素之一

    数据治理项目的实现需要的核心要素之一

    数据治理是长期、复杂的工程,每个数据治理的领域都可作为一个独立方向进行研究,目前总结的数据治理领域包括但不限于以下内容:数据标准、数据模……查看详情

    发布时间:2020.03.26来源:知乎浏览量:122次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议