数据治理与数据质量的关系

发布时间:2018.11.29来源:知乎浏览量:73次标签:数据治理

单纯从数据层面来看,数据体系包括治理、管理和应用三个部分。治理是负责解决人与人之间的事,管理负责各个职能领域,应用则是价值的实现。不讨论基础层,iaas层,只讨论数据视角的事情。


数据管理里面数据质量dq是人与人矛盾分歧最大的职能域,所以也配置全套的数据治理手段。细节不多谈,这方面理论和实践都比较成熟,但效果差强人意。现在讨论大数据,应该和场景关联起来;同样数据质量和业务需求和技术方案密切相关。数据质量管理开展的驱动因素比较复杂,银行里面里面的驱动因素第一是监管,第二是内部的数据治/管理(比如标准),第三才是数据应用。


举个典型案例,比如同一业务指标在不同系统间的结果不一致。这个分析起来要看从业务定义开始,到数据采集、加工处理、应用各个环节;影响范围也会比较广,比如对监管、对决策;从数据体系职能域看呢,又会和数据治理、数据标准、数据架构有关联。


从数据生产者、使用者的角度都存在潜在的问题,流程、标准不一致也是导致问题的原因,所以数据质量的讨论往往比较复杂琐碎。有个简化的思路就是quality = fitness for purpose,是否有问题,关键看是谁的什么purpose。大数据背景下补充两个dq属性,一个是可链接性,内外部数据的关联整合;另一个是真实性,这是传统dq未曾参与或者说积极回避的事情。真实性实在是难啊,直接就可以成为i数据挖掘、人工智能的应用案例;相比之下关联整合现在做的还比较多。现在更愿意采用fitness for purpose也是短期效益迫使的缘故,数据质量的长期效益往往难以实现、也难以证明。


数据质量是综合表现,原因错综复杂。数据治理是王婆娘的裹脚布,也是政治斗争的绞肉机。治理与管理都存在矛盾,跟别说与应用之间的关系了。传说国外企业的CDO往往三年就要更换东家,也就很容易理解了。


归根结底都要落到人的因素上,数据的管理与应用是客户因素占比大,还是主管因素占比大呢?我想大家心里都有谱,所以试图依赖技术手段解决管理问题终归都会失效。


回到开头的问题,治理、管理都是细腻的事情,需要工匠化反复锤炼,还有长期不受重视的困惑,这些都对从业者是巨大的挑战。对我个人来言,我更愿意去在大数据实践中讨论治理、管理与应用的融合,换句话说就是价值导向驱动数据体系的运转。这样的视角下,可以研究的问题就会很多,并且目标会更精准一下。相比原来试图从底层解决治理、管理问题的思路要务实一些。另外就是可以持续探索新技术了,人工智能、区块链都是目光所及范围之内的内容。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 打破数据治理:数据质量

    打破数据治理:数据质量

    任何数据驱动的计划的成功取决于该数据是否相关且值得信赖。随着越来越多的大学将数据视为负责任的战略规划和计划的关键,许多人都意识到:有些数……查看详情

    发布时间:2019.07.11来源:知乎浏览量:106次

  • 数据治理和数据管理推动成功的词汇表和词典

    数据治理和数据管理推动成功的词汇表和词典

    任何数据管理员的噩梦都是运行会议,创建迂腐和无关的业务词汇表或数据词典,最终收集网络粉尘。但是,跳过构建和维护良好的业务术语表或数据字典……查看详情

    发布时间:2019.02.21来源:亿信华辰浏览量:110次

  • 数据治理和安全

    数据治理和安全

    从组织的角度来看,通过人力资源技术传递的数据需要尽可能保持清洁,一致和可转移。问题?多个系统,手动流程和其他低效率需要清理脏数据,稍后从……查看详情

    发布时间:2018.12.04来源:数据治理浏览量:104次

  • 数字化时代的大数据治理应该怎么做呢?

    数字化时代的大数据治理应该怎么做呢?

    随着时代的发展,各个企业收集数据的渠道越来越多样化,也有越来越多的企业开始应用大数据来创造价值,为了合理有效的挖掘数据资源来源的价值,首……查看详情

    发布时间:2019.07.18来源:知乎浏览量:108次

  • 数据治理的重点领域:关注数据质量

    数据治理的重点领域:关注数据质量

    由于数据质量,完整性或可用性方面的问题,这种类型的程序通常会出现。……查看详情

    发布时间:2019.03.29来源:亿信华辰浏览量:106次

  • 数据交换如何“主动出击”?

    数据交换如何“主动出击”?

    传统的数据交换,一般说来是用户根据自身的数据抽取需求,配置好相关的设置,定义好数据抽取时间来进行数据交换。这是一种被动式的数据交换,如果……查看详情

    发布时间:2020.09.27来源:头条浏览量:95次

  • 企业数据治理到底怎么做?

    企业数据治理到底怎么做?

    数据治理对于确保数据的准确、适度分享和保护是至关重要的。有效的数据治理计划会通过改进决策、缩减成本、降低风险和提高安全合规等方式,将价值……查看详情

    发布时间:2019.08.30来源:知乎浏览量:97次

  • 为什么组织需要可靠的数据治理策略

    为什么组织需要可靠的数据治理策略

    数据管理已经从仅由IT部门访问的集中数据发展为存储在数据仓库中的大量数据。输入数据治理。……查看详情

    发布时间:2019.01.17来源:数据治理浏览量:93次

  • 银行业数据治理实践难点及应对-数据治理实践

    银行业数据治理实践难点及应对-数据治理实践

    数据治理已成为在全球各国领导层面进行讨论的中心议题,其背景和目的,主要是旨在推动建立新的国际数据监管体系。在我国的金融行业中,随着互联网……查看详情

    发布时间:2019.12.20来源:知乎浏览量:87次

  • 银行数据治理工作的落地面临着众多的困难与挑战

    银行数据治理工作的落地面临着众多的困难与挑战

    数据治理越来越受到银行、监管机构乃至国家层面的重视。银行已经意识到高效的管理体系、统一的数据标准、良好的数据质量才是数据价值实现的基础。……查看详情

    发布时间:2020.07.09来源:小亿浏览量:94次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议