数据准备和数据映射:数据管理和数据治理之间的粘合剂,以加快洞察力并降低风险

发布时间:2019.02.13来源:亿信华辰浏览量:91次标签:数据治理


组织已经花费了大量的时间和金钱试图在不同的平台上协调数据,包括清理、上载元数据、转换代码、定义业务词汇表、跟踪数据转换等。但是,在整个企业范围内对数据进行标准化的尝试并没有产生预期的结果。如果数据管理失败,公司就无法有效地实施数据治理——记录和应用业务规则和流程,分析变更的影响并进行审计。

这个问题通常是从数据准备和映射的手动集成方法开始的。只有当公司第一次尝试手动编目和记录操作系统、流程和相关数据(无论是静态的还是动态的)时,他们才会意识到整个数据准备和映射工作是多么耗时,以及为什么这项工作肯定会因人为错误和数据质量问题而变得复杂。为了有效地促进业务转型,以及满足法规和合规要求,不存在任何意外。 很明显,要发现和合成以不同格式存在于数千个未经授权、未记录的数据库、应用程序、ETL过程和过程代码中的数据,人工道路非常具有挑战性。考虑将源系统字段(通常是源文件或数据库表)手动映射到目标系统字段(例如目标数据仓库或数据集市中的不同表)的问题。然而,随着电子表格映射数据的发展,ETL设计过程往往会受到影响,因为人为错误,电子表格映射数据没有更新,或者可能被错误地更新。因此,关于转换后的数据是否可信的问题仍然存在。

可悲的事实是,像数据科学家这样的高薪知识工作者,花费了高达80%的时间来寻找和理解源数据,并解决错误或不一致的问题,而不是将其分析为真正的价值。在查看主要数据集成项目(如数据仓库和主数据管理)时,统计数据是类似的,数据管理员面临识别和记录数据沿袭和敏感数据元素的挑战。正确地转换为业务友好的术语时,企业利益相关者如何获得准确和可操作的洞察力?组织如何掌握无缝数据发现、移动、转换以及IT和业务协作,以逆转准备与交付价值的比率。

要克服这些障碍,需要建立一个自动化、实时、高质量和元数据驱动的管道,对每个人都有用,从数据科学家到企业架构师,再到业务分析师,再到C级执行官。要做到这一点,需要有一个健全的数据管理策略和技术,以自动地及时交付符合业务需求的高质量数据。 从那里开始,他们需要一个强大的数据治理策略和技术,以自动将管理良好的数据与核心功能(用于审计、法定报告和合规性要求)链接并同步,并推动业务洞察。

创建高质量数据管道  

数据管理和数据治理是一种实时、准确的数据布局,包括数据库、数据湖和数据仓库中的“静止数据”以及与关键应用程序集成和使用的“动态数据”。而且,还可以控制这种情况,以促进洞察力和协作,并限制风险。通过元数据驱动、自动化、实时、高质量的数据管道,所有利益相关者都可以访问他们现在能够理解和信任的数据,以及他们被授权使用的数据。最后,他们可以根据可靠信息的完整库存做出战略决策。

数据管理和治理的集成还支持行业满足法规和合规要求的需求,确保审计不会因无法发现关键数据或未能将敏感数据标记为集成过程的一部分而受到影响。 数据驱动的洞察力、敏捷创新、业务转型和法规遵从性是围绕数据治理中心的数据准备/映射和企业建模(业务流程、企业架构和数据建模)的成果。ERwin Mapping Manager(MM)将数据管理和数据治理过程结合在一个自动化流程中,贯穿集成生命周期,从数据映射到协调和聚合,再到生成数据沿袭的物理体现,即事务数据和操作数据的创建、移动和转换。

它的标志是数据交付(业务词汇表将物理元数据连接到特定的业务术语和定义)和元数据管理(通过数据映射)的一致方法。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理需要转变

    数据治理需要转变

    环境数据治理是一种策略和方法,它不仅可以扩展您的数据治理工作,还可以作为解决方案,以满足我们为新用例,法规和新出现的数字功能扩展数据时存……查看详情

    发布时间:2019.02.15来源:Michele Goetz浏览量:71次

  • 通往更安全,更好数据的途径

    通往更安全,更好数据的途径

    企业在建立监督数据运营的理事会时面临的最大问题之一是原始事实和数据很少为分析做好准备。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:53次

  • 关于数据治理的十件事

    关于数据治理的十件事

    数据治理是我们现在遇到的众多热门词汇之一。有人可能会说这是炒作,但我不这么认为。出于许多好的理由,这是我们的首要考虑,其中一些我们在下面……查看详情

    发布时间:2018.12.18来源:数据治理浏览量:97次

  • 数据质量对数据治理的重要性!

    数据质量对数据治理的重要性!

    人常说“失之毫厘,差之千里”,在数据来源多样化的情况下,数据的可靠性和实用性,直接影响到统计分析是否得到正确的结论,所以说数据的质量尤为……查看详情

    发布时间:2019.11.01来源:知乎浏览量:58次

  • 企业级数据资产管理——亿信华辰

    企业级数据资产管理——亿信华辰

    数据成为资产,已经是行业共识,甚至有人建议将数据计入资产负债表。但如果对比实物资产,对数据资产的管理,还处于非常原始的阶段。……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:97次

  • 技术最热门的新趋势:数据治理

    技术最热门的新趋势:数据治理

    什么是信息技术最热门的新趋势?如果你说“人工智能”,给自己部分功劳,因为AI肯定很热。但对于商业领域的技术决策者来说,有一些更大的问题就……查看详情

    发布时间:2019.02.28来源:亿信华辰浏览量:59次

  • 浅谈数据治理的发展趋势

    浅谈数据治理的发展趋势

    随着大数据技术的飞速发展,大数据已经融入到了各行各业,为了能让各企业的数据资产得到充分的利用,数据治理非常重要,如今数据治理已经逐渐成为……查看详情

    发布时间:2019.07.17来源:知乎浏览量:72次

  • 数据治理计划阶段

    数据治理计划阶段

    所有程序都有生命周期。……查看详情

    发布时间:2019.03.29来源:亿信华辰浏览量:82次

  • 数据治理:大学数据的分类

    数据治理:大学数据的分类

    所有学院数据都被分类为敏感级别,为理解和管理大学数据提供基础。准确的分类为大学数据应用适当的安全级别提供了基础。这些分类考虑了法律保护(……查看详情

    发布时间:2018.11.26来源:数据治理浏览量:141次

  • 中国科大:大数据实现本科生学业“全过程”管理

    中国科大:大数据实现本科生学业“全过程”管理

    近年来,中国科学技术大学(以下简称“中国科大”)践行“管理即服务”理念,实现“教、学、管”联动育人,完善“学业追踪”和“困难资助追踪”网……查看详情

    发布时间:2019.03.11来源:亿信华辰浏览量:50次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议