大数据平台安全防护——亿信华辰

发布时间:2019.01.10来源:亿信华辰浏览量:203次标签:数据治理

企业大数据数据源接入越来越多、数据量越来越大、平台越来越复杂,保存了很多企业敏感数据,甚至客户隐私信息。随着数据商业价值的增加,针对数据的攻击、窃取、滥用、泄露等活动的持续泛滥,企业面临着严峻的安全风险。

安全风险及事件存在以下特点:一、风险成因复杂交织,既有外部攻击,也有内部泄露,既有技术漏洞,也有管理缺陷;既有新技术新模式触发的新风险,也有传统安全问题的持续触发;二、威胁范围全域覆盖,大数据安全威胁渗透在数据生产、交互和消费等大数据产业链的各个环节,包括数据源的提供者、大数据加工平台的提供者以及大数据分析服务的提供者等各类主体;三、事件影响重大深远,数据泄露影响面广,对用户隐私造成极大损害。从企业角度,建议运营者规范数据开发利用规则明确数据权属关系,重点加强个人数据和重点数据的安全管理,针对采集、存储、传输、处理、交换和销毁等各个环节开展全生命周期的保护,从制度流程、人员能力、组织建设和技术工具等方面加强数据安全能力建设。

数据安全



安全防护体系的建设需要遵循“三分技术七分管理”的安全防护理念,从技术层面上考虑物理设施的安全,终端安全、网络安全和云平台安全等方面。平台安全管理要强化数据权限控制、数据脱敏和隐私保护和数据可信赖管理。横向涵盖数据流向各环节、纵向平台架构分层进行防护,规划和设计从网络、平台、数据、管理等方面全方位考虑安全防护,构建安全防御体系。

整体架构上横向主要是在数据采集入口增加安全网关、防火墙防护;建立数据安全隔离区,集中进行数据对内外交互、数据出口侧增加数据防泄漏设备,在交互过程对数据进行授权、隐私保护、水印、加密传递等处理。纵向从大数据平台硬件资源层加强漏洞检测版本补丁更新、Hadoop组件进行安全基线扫描。数据层面:管理上对数据进行敏感等级分类、安全保护机、操作规范制定,根据规则对现有数据进行脱敏处理;应用租户,可通过4A等安全平台进行授权及合规操作等。

网络安全:

一、内外网物理隔离:大数据平台部署在企业内网,与外网物理隔离杜绝安全隐患。对网络通讯进行监控,如果发现任何来自于网络内部或外部的黑客入侵或可疑的访问行为,可做到及时的报警与阻断,通过网络平面隔离的方式来保证网络安全。

二、数据采集安全防护:对内对外系统数据采集网络入口部署防火墙、安全网关,建立数据隔离区,完成大数据平台内外部系统数据交互,保障安全。

三、数据共享安全防护;多租户隔离,实施多租户访问隔离,数据安全等级划分以及基于标签的强制访问控制,提供数据访问授权模型,提供全局数据视图和私有数据视图,提供数据视图的访问控制。通过数据隔离区,实现大数据平台数据对企业内外部数据共享,在网络出口处部署数据防泄漏设备,实现敏感数据保护。

四、数据传输安全防护:用户隐私数据脱敏,提供数据脱敏和个人信息去标识化功能,提供满足国际密码算法的用户数据加密服务。各类用户可通过数据共享发布平台访问大数据平台,提交访问数据请求,访问代理层收到用户访问请求后,根据用户权限分析所要访问的数据,与脱敏及访问策略映射库进行比对,对需要脱敏的数据进行脱敏然后加密传输展示给用户。

五、流量异常监控:搭建数据流量异常监控平台,能够实时监控平台出现的各种网络问题。对网络中所有传输的数据进行检测、分析、诊断,排除网络事故,规避安全风险,有效的提高网络性能。

六、数据容灾:为集群内部数据提供实时的异地数据备份容灾功能,数据库对外提供跨数据中心的容灾机制。


数据安全


平台安全:

一、硬件安全:主机安全漏洞扫描,系统版本补丁更新,防病毒处理等。加强主机口令、操作管理,减少非法登录。定期备份系统和文件数据,能够快速修复主机的系统问题。建设大数据系统的网关/防火墙,外部攻击首先需要冲破代理的保护才能进一步攻击大数据平台,增加恶意用户的攻击难度。

二、组件安全:组件安全针对大数据的主流平台HDFS、HIVE、HBASE、Storm、Spark等进行安全基线扫描,分别提出身份、认证、授权、审计等配置方面检查方法,并形成可操作的手册和可执行脚本,并整合入SMP系统管理;增加对大数据平台漏洞信息的管理及处理。

三、存储安全:存储安全包括数据的加密存储、访问控制、数据的封装、数据的备份与恢复以及残余数据的销毁。敏感数据脱敏保存,禁止明文存储。加强数据文件的校验,保持分布式文件的一致性。根据安全要求,授权访问数据。定期备份数据,一旦发生数据丢失或损坏,可以利用备份来恢复数据,从而保证在故障发生后数据不丢失。

四、应用安全:用户认证,多租户纳入4A平台集中管理,接入4A平台管控的大数据平台必须开启Kerberos认证配置,以集中管控大数据平台的多租户信息。金库访问:当多租户没有明文数据的查询权限,经审批可以通过金库模块获得明文数据的查看权限。


数据安全


数据安全:对数据进行敏感等级分类、安全保护机及操作规范制定。根据敏感数据规则定义对平台存储敏感数据识别、打标及打标数据的分类分级访问控制;根据数据敏感规则,扫描引擎、扫描数据库敏感数据,生成敏感数据及访问策略映射库。

管理保障:建立大数据安全管理保障制度和规范,安全策略管控方面做到集中管理、集中修订、集中更新安全规则,从而实现统一的安全策略实施,安全管理员能够在中央控制端进行全系统的监控;安全保障要求方面按照规范要求进行数据访问、应用操作。相关制度包括对外合作安全管理(外部业务合作和外部代维代建)、内部安全管理、数据分类分级管理、应急响应机制、资产设施保护和认证授权管理等。

大数据安全防护体系的建设,需要对大数据安全防护体系内部的各个模块进行详细的研究,通过多种手段保障企业级大数据平台的安全,最终构建大数据安全管控平台,实现敏感数据隐私保护,降低企业运营风险;规范大数据平台操作流程,保证开源系统的安全,做到大数据平台系统“事前可管、事中可控、事后可查”。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理管理措施

    数据治理管理措施

    提高全面思想认识 毋庸置疑,数据是企业的宝贵资产,各企业已经意识到数据质量的重要性,但是并没有将数据治理提到战略高度,信息化建设的重点……查看详情

    发布时间:2020.10.21来源:知乎浏览量:105次

  • 你以为建设大数据平台就好了,还差这一步

    你以为建设大数据平台就好了,还差这一步

    长期以来,大家一直忽略一个问题:数据跟原来的企业应用系统一样,它是需要被管理的。企业逐渐了解数据所蕴含的价值,对数据的重视程度越来越高。……查看详情

    发布时间:2019.06.03来源:亿信华辰浏览量:90次

  • 数据治理的未来

    数据治理的未来

    数据已成为我们数字经济的命脉。并且为了提取其全部价值,必须管理和管理数据。因此,本文的标题和我主题演讲的主题:数据治理的未来现在。……查看详情

    发布时间:2018.12.26来源:数据治理浏览量:136次

  • 现在企业为什么越来越关注数据治理了

    现在企业为什么越来越关注数据治理了

    数据治理在当今的企业中经常被引用,但是许多IT团队在围绕如此宽泛的概念进行思考时遇到了麻烦。数据治理也称为信息治理,是指用于管理整个组织……查看详情

    发布时间:2020.06.22来源:知乎浏览量:148次

  • 企业数据治理的实际步骤

    企业数据治理的实际步骤

    数据治理是一项业务活动。到目前为止,已经有多项努力从IT内部开始。但是,数据属于业务,而不属于IT。IT可以提供建议,帮助管理存储库,提……查看详情

    发布时间:2018.11.20来源:数据治理浏览量:123次

  • 通用数据治理平台的功能模块

    通用数据治理平台的功能模块

    随着互联网与大数据技术的飞速发展,大数据已经融入到了各行各业。数据治理非常重要,已经逐渐成为了政府、企业进行智能化决策的重要手段。数据治……查看详情

    发布时间:2022.02.23来源:浏览量:484次

  • 企业大数据治理的五个核心要素

    企业大数据治理的五个核心要素

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。数据的格……查看详情

    发布时间:2019.08.20来源:知乎浏览量:112次

  • 数据治理的数据架构:主动方法

    数据治理的数据架构:主动方法

    “数据架构是业务战略的物理实现,” 全球数据战略有限公司 EMEA首席顾问Nigel Turner在DATAVERSITY® 企业数据治……查看详情

    发布时间:2019.01.17来源:数据治理浏览量:123次

  • 如何应对数据标准化的难题

    如何应对数据标准化的难题

    数据标准好制定,但是数据标准落地相对就困难多了。国内的数据标准化工作发展了那么多年,各个行业,各个组织都在建设自己的数据标准,但是你很少……查看详情

    发布时间:2019.12.20来源:知乎浏览量:123次

  • 为什么你应该有一个数据治理策略

    为什么你应该有一个数据治理策略

    数据治理愈来愈受市场重视,那么做好数据治理就应该展开相关的策略。……查看详情

    发布时间:2018.12.26来源:亿信华辰浏览量:134次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议