数据中台如何进行数据治理

发布时间:2020.04.01来源:知乎浏览量:178次标签:数据治理

数据中台可通过数据需求、数据质量、元数据管理等领域加强数据治理

一、增强业务需求管理,构建并持续完善数据标准体系
数据中台的运营部门,收集到来自于银行各部门、各层级管理人员和业务分析人员的业务需求,并且随着人员岗位的变化,即使同一层级、同一角色的人员提出的业务需求也可能大不相同;在不同的时间段下,根据银行的业务状况、规模和偏好调整等情况,业务需求重点和逻辑也不一样。

因此,数据中台的运营部门,应持续提炼数据中台业务需求,并与数据治理部门协同,依据需求及认责管理办法,并与不同类型的业务需求与实施工程相结合,落地与银行数据标准体系相吻合的指标体系。

分类管理业务需求:通常银行业务需求来自四个方面,包括临时类数据需求、接口类数据需求、报表类数据需求、综合类数据需求。其中临时类数据需求的数据时效性比较高,开发时间较短。但接口类、报表类和综合类数据需求都相对复杂,有较多的业务口径定义和数据探源工作,实施工程种类也较多。
识别和提炼业务需求:从数据角度总结和归纳共性的指标与公共维度,并对指标的名称、业务口径、数据口径进行定义与描述,形成企业级可共享的指标库。同时,由数据管理部门牵头,明确指标的归属部门和更新机制。

二、建立跨系统数据质量检核机制,强化数据的质量管控
数据中台的数据质量问题,不仅取决于源头系统及外部数据的数据质量,并决定于采集、加工、存储、生成与应用整个数据生命周期的数据处理流程的准确程度。因此数据中台对于数据质量的管理,需要通过组织管理、技术方法、业务流程理解以及数据语义理解等多个方面,进行综合管理。

组织管理:数据中台开发与运维部门,主动参与或者主导数据治理过程,积极建立数据质量管理机制,推动落实数据管理流程,更大力度的辅助数据治理归口管理部门,发现与解决数据质量问题。
技术方法:数据中台推动数据质量问题的识别与解决,具有企业级、跨系统的平台和能力,又是提升数据服务能力的必要基础。通过归纳数据质量问题的类型及产生原因,利用技术方式实现跨部门、跨系统的数据质量问题的监测与预警,并可以持续验证与跟踪数据质量问题的解决。
业务流程及数据语义理解:数据中台的开发及运营部门,由于持续梳理各个部门、各个系统的内外部数据,通过不断的进行数据理解、数据分析,可以识别与发现部门之间业务术语、规则、逻辑等不一致而导致的数据问题,可与数据管理部门一道进行数据管控。

三、提升元数据的数据质量,深化元数据分析及应用
随着数据中台各种来源数据增多,数据应用越来越丰富,数据处理过程也必然越来越复杂。在各种数据中,如何聚焦业务关注的数据内容、使用方式以及未来应用趋势,对于数据中台的架构演变、模型设计以及数据治理等活动来说,将变的越来越重要。

识别数据:通过数据中台建设流程,整理业务层面的数据资产目录,以及维护开发方面的物理数据模型和数据字典,清晰定义各个字段项名称、含义等,实现数据资源的语义化。
评价数据:通过获取表级及字段级基础元数据、关联元数据、应用日志等,运用图计算、标签传播算法等技术,系统化、自动化地对计算与存储平台上的数据进行打标、整理、归档,计算相关评价指标,如字段的查询次数、关联次数、聚合次数、过滤次数等。
追踪数据在使用过程中的变化:通过识别和追踪数据在全生命周期的各个形态和变化,实现源数据的分析管理,对于数据使用者,可以通过元数据让其快速找到所需要的数据;对于ETL 
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • Spring Boot、微服务架构和大数据治理三者之间的故事

    Spring Boot、微服务架构和大数据治理三者之间的故事

    微服务的诞生并非偶然,它是在互联网高速发展,技术日新月异的变化以及传统架构无法适应快速变化等多重因素的推动下诞生的产物。……查看详情

    发布时间:2019.01.07来源:亿信华辰浏览量:99次

  • 数据治理:清洁客户数据的注意事项

    数据治理:清洁客户数据的注意事项

    根据相关研究显示,超过50%的企业花在清理数据上的时间比实际使用时要多,确保数据质量对营销成功至关重要。……查看详情

    发布时间:2019.06.28来源:知乎浏览量:87次

  • 大数据如何成为了驱动社会治理的创新转向?

    大数据如何成为了驱动社会治理的创新转向?

    大数据、智能化、移动互联、云计算成为了驱动经济发展和社会转型的重要力量,“用数据说话、用数据决策、用数据管理、用数据创新”成为了公共管理……查看详情

    发布时间:2018.09.30来源:中新界面浏览量:108次

  • 从数据资产管理出发,看数据治理的最优架构如何搭建?

    从数据资产管理出发,看数据治理的最优架构如何搭建?

    通过数据治理工作的开展,数据变得可信且易于理解,并能有效地支撑业务人员的决策分析工作,数据资产也变得更易用,更有价值。……查看详情

    发布时间:2021.04.15来源:亿信数据治理知识库浏览量:164次

  • 数据交换如何“主动出击”?

    数据交换如何“主动出击”?

    传统的数据交换,一般说来是用户根据自身的数据抽取需求,配置好相关的设置,定义好数据抽取时间来进行数据交换。这是一种被动式的数据交换,如果……查看详情

    发布时间:2020.09.27来源:头条浏览量:102次

  • 数据湖架构 - 最佳实践指南

    数据湖架构 - 最佳实践指南

    实施正确的数据湖架构对于将数据转化为价值至关重要。无论您的数据湖中有多少数据,如果您缺乏有效管理数据、跟踪数据并确保其安全的架构特性,那……查看详情

    发布时间:2021.06.18来源:亿信数据治理知识库浏览量:114次

  • 数据治理:让数据质量更好

    数据治理:让数据质量更好

    大数据时代数据产生的价值越来越大,基于数据的相关技术、应用形式也在快速发展,开发基于数据的新型应用已经成为高校信息化建设的一个重点领域。……查看详情

    发布时间:2019.02.12来源:亿信华辰浏览量:148次

  • 企业数据质量是数字化时代企业的重要资产

    企业数据质量是数字化时代企业的重要资产

    大数据的概念正在进一步渗透到各个行业与领域当中,随着企业业务增长和规模扩大,以及伴随着信息技术和相关基础设施的不断完善,在短短的几年内,……查看详情

    发布时间:2020.01.10来源:知乎浏览量:128次

  • 数据交换标准是什么

    数据交换标准是什么

    目前,国内采用软件管理的企业众多,有的企业自己开发管理软件、有的购买软件厂商的产品。但是它们采用的数据库平台和数据库结构各不相同。不同企……查看详情

    发布时间:2020.08.12来源:小亿浏览量:74次

  • 数据治理标准:数据质量六大评价标准

    数据治理标准:数据质量六大评价标准

    万事万物都有其标准,铁轨有规定的标准宽度,一千克有规定的标准重量。那么在大数据时代,企业中各种各样的数据是否也有统一的数据标准呢?数据标……查看详情

    发布时间:2022.01.20来源:小亿浏览量:4065次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议