商业银行数据治理从源头抓起 坚持数据标准先行

发布时间:2019.09.04来源:知乎浏览量:124次标签:数据治理

随着移动互联网、大数据、云计算、人工智能等技术的发展,整个社会经济将迎来一场数字化的变革。银行作为技术高敏感的行业,每次重大技术创新都会对其运作模式产生影响,而此次数字化变革速度更快、影响更为深远,商业银行也将迎来一场数字化的变革。
数据治理
银行数字化转型的业务模式转变是目的,而技术的应用则是手段,最终数据的采集、整合、应用、管理才是银行数字化转型的基础。银行数字化转型工作的前提是通过完善数据治理工作,提升数据质量,充分展现大数据的价值。对于银行而言,提高对数据的管理与治理能力、强化数据资产理念、构建数字化经营能力是数字化转型工作的第一要务。  

数据治理三大举措创造数据价值
商业银行数据治理是一门将数据视为一项资产的学科。它涉及到银行以资产的形式对数据进行优化、保护和利用的决策权利。糟糕的数据管理意味着糟糕的业务决策和提供给违规更大的风险暴露。因此,就涉及到对组织内的人员、流程、技术和策略的编排,从而从数据中获得价值的最大化。

1、涉及数据体系架构的建立
首先,银行应该建立一个全行跨部门的、负责政策、标准和流程的数据治理管理部门,并明确数据的所有者、管理者和使用者,做到权责分明,为后续的数据治理打好基础。一般而言,这一管理部门承担银行数据管理者的职责,制定数据治理工作的各种流程、制度和办法,推动落实全行数据治理工作,建立决策、沟通、监控、考核机制,建立培训和推广机制,创造数据治理文化氛围。数据治理组织搭建的目的在于对数据管理工作与商业银行的业务发展进行协调和同步。数据治理组织在理想中应具备三层组织架构:顶层是数据治理委员会,由相关业务部门的领导组成;中间层是数据治理工作组,由协调数据治理具体工作的经理组成;基础层是数据执行组,负责日常的数据管理工作。只有得到高层支持,数据治理的效果才会显著,整个治理流程顺畅。

2、数据标准是数据治理的关键点
商业银行内部IT系统之间的“孤岛”现象是我国银行信息化建设的软肋和通病,而没有良好的数据标准或数据标准不能落地则是这一现象的症结所在。银行数据标准的问题突出体现为:数据来源多头,定义不一致,格式不统一,交换困难。因为数据常常在业务系统和特定的业务运营环境中产生,当数据被转移到分析环境或在企业级层面进行整合的时候,数据往往会出现不一致的问题。因此数据治理要坚持标准先行原则。此外,也要加强行业层面的标准化工作,积极参与和推动银行机构之间、银行与监管机构之间、银行与外部机构之间的信息交换和共享。以数据标准来推动行业深挖数据价值,提升信息化建设效能,进而全面促进数据标准的贯彻落实。

3、确保数据完整、准确、一致性,提高数据质量
数据质量管理工作主要包括两方面:
1、数据质量检验核查工作。包括建立数据标准项和主要源系统的数据映射规则,设计编写数据标准项的质量检验规则;完成数据质量问题检查,形成数据质量问题清单,对数据质量问题进行分析排查并协调、分发各系统解决等。

2、建立及落实数据质量考核评价机制。数据治理成功的重要表现,是使银行各级管理者和员工能获取准确的统计分析报表。如果银行的指标和报表数据经常发生错误,建设好的数据应用平台就会成为摆设。数据质量的提升和保障,最终目的是为了提高业务效率,确保数据的价值发现。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 区块链是金融数据治理的天然工具

    区块链是金融数据治理的天然工具

    一、从金融数据管理到金融数据治理进入“大数据时代”,不仅催生更多金融业态,数据体量更是呈现爆炸式增长。如何将金融……查看详情

    发布时间:2019.01.07来源:亿信华辰浏览量:123次

  • 数据治理与数据质量

    数据治理与数据质量

    单纯从数据层面来看,数据体系包括治理、管理和应用三个部分。治理是负责解决人与人之间的事,管理负责各个职能领域,应用则是价值的实现。不讨论……查看详情

    发布时间:2019.01.03来源:Magic浏览量:89次

  • 银行业重塑数据治理体系 助力转型升级

    银行业重塑数据治理体系 助力转型升级

    银行业金融机构要深化认识,积极主动对接国家政策,改革数据治理体系,依靠数据治理改进决策、缩减成本、降低风险、增强核心竞争力,推动银行业向……查看详情

    发布时间:2019.10.18来源:知乎浏览量:136次

  • GDPR,合规性问题推动数据治理策略

    GDPR,合规性问题推动数据治理策略

    几乎每个组织都认为数据治理很重要,那么为什么他们都没有将数据治理纳入其中呢?……查看详情

    发布时间:2019.01.23来源:亿信华辰浏览量:111次

  • 理解数据治理

    理解数据治理

    专注于商业智能(bi)市场,深入了解组织在数据管理策略方面所面临的一些共同挑战。……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:115次

  • 数据治理过程中核心数据界定怎么破?

    数据治理过程中核心数据界定怎么破?

    数据治理过程中,在我们费了九牛二虎之力盘点出企业当前数据资产的家当,形成了数据资产的清单后,同时也会列明这个业务域的核心数据实体,这就碰……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:109次

  • 医疗领域的领导与治理

    医疗领域的领导与治理

    医疗保健领域的董事会感受到与其他类型组织相同的监管压力。对领导力和治理的重视使医疗保健委员会围绕董事会议席表示关注,目标是采取更强有力的……查看详情

    发布时间:2019.03.14来源:亿信华辰浏览量:118次

  • 数据治理如何解决数据多、杂、乱、差问题?

    数据治理如何解决数据多、杂、乱、差问题?

    许多大数据公司在过去一段时间都得到了较好的发展,但由于在数据生产的过程中并未做到足够重视,数据质量与可靠性则很难得到保证,这也是数据治理……查看详情

    发布时间:2022.02.21来源:小亿浏览量:312次

  • 2021 年 10 大数据治理工具

    2021 年 10 大数据治理工具

    数据治理工具被定义为帮助创建和维护一组结构化策略、程序和协议的过程的工具,这些策略、程序和协议控制企业数据的存储、使用和管理方式。本文将……查看详情

    发布时间:2021.07.22来源:亿信华辰数据治理知识库浏览量:828次

  • 数据治理:它是什么以及它为什么重要?

    数据治理:它是什么以及它为什么重要?

    数据治理:它是什么以及它为什么重要?……查看详情

    发布时间:2018.12.26来源:亿信华辰浏览量:106次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议