数据质量分析定义的六个阶段

发布时间:2019.12.06来源:知乎浏览量:163次标签:数据治理

(1)定义阶段(D阶段)。界定数据质量治理的范围,并将数据质量改进的方向和内容界定在合理的范围内。通过使用主数据识别法、专家小组法、问卷调查法、漏斗法等方法,定义出数据治理的对象和范围。企业数据质量治理对象一般主要包括两类数据:一类是操作型数据,例如:主数据、参照数据和交易数据。另一类是分析型数据,例如:主题数据、指标数据等。注:根据笔者经验以及80/20法则,企业的数据质问题80%是由于管理不当或业务操作不规范引起的,参考:《主数据的3大特点、4个超越和三个80/20原则》。

(2)测量阶段(M阶段)。在定义出数据治理对象和内容后,需要选取以下若干个指标来作为数据质量评价指标,建立数据质量评估模型,对企业的数据进行评估和测量。常用的数据质量评价指标就是我们上述提到的:数据唯一性、数据完整性、数据准确性、数据一致性、数据关联性、数据及时性等。

(3)分析阶段(A阶段)。基于数据质量评估模型,执行数据质量分析任务,通过数据分析,找到发生数据质量问题的重灾区,确定出影响数据质量的关键因素。数据治理和大数据分析是密不可分的,数据治理的目标是提升数据质量从而提高数据分析的准确性,而大数据分析技术也可反向作用于数据治理,通过大数据分析算法和大数据可视化技术,能够更准确、更直观的定位到发生数据质量问题的症结所在。该阶段可以用的大数据技术包括:回归分析、因子分析、鱼骨图分析、帕累托分析、矩阵数据分析等。

(4)改进阶段(I 阶段)。通过制定改进管理和业务流程、优化数据质量的方案,消除数据质量问题或将数据质量问题带来的影响降低到最小程度。我们一直在强调数据质量的优化和提升,绝不单单是技术问题,应从管理和业务入手,找出数据质量问题发生的根因,再对症下药。同时,数据质量管理是一个持续优化的过程,需要企业全员参与,并逐步培养起全员的数据质量意识和数据思维。该过程主要用到方法:流程再造、绩效激励等。

(5)控制阶段(C阶段)。固化数据标准,优化数据管理流程,并通过数据管理和监控手段,确保流程改进成果,提升数据质量。 主要方法有:标准化、程序化、制度化等。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 多措并举提升银行业数据治理能力

    多措并举提升银行业数据治理能力

    数据治理是银行业高质量发展的必由之路,当前银行业的数字化转型面临一些挑战和不足,要从建立数据治理架构、统一数据标准、加强数据分析应用等方……查看详情

    发布时间:2019.12.13来源:知乎浏览量:114次

  • 数据治理成功的几大要素,你都做到了吗?

    数据治理成功的几大要素,你都做到了吗?

    数据治理(DG)是对企业中使用的数据的可用性,可用性,完整性和安全性的整体管理。健全的数据治理计划包括理事机构或理事会,一套明确的程序和……查看详情

    发布时间:2019.09.04来源:知乎浏览量:154次

  • 不治理就破产—谈大数据时代的数据治理

    不治理就破产—谈大数据时代的数据治理

    随着Hadoop技术的提升,数据如何进来,如何整合,开展什么样的应用都已经有了成熟的案例,可是,同传统数仓时代一样,垃圾进垃圾出,如何破……查看详情

    发布时间:2019.02.21来源:知乎浏览量:101次

  • 数据太多、太乱、太杂?你需要这样一套数据治理平台

    数据太多、太乱、太杂?你需要这样一套数据治理平台

    当前,企业变革已经成为企业适应剧烈变化的市场环境、实现长期发展的必经之路。然而,过去为组织带来工作效率提升的烟囱式的孤岛式的业务系统……查看详情

    发布时间:2019.11.20来源:知乎浏览量:128次

  • 企业大数据治理的五个核心要素

    企业大数据治理的五个核心要素

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。数据的格……查看详情

    发布时间:2019.08.20来源:知乎浏览量:108次

  • 一文讲透数据治理核心指标

    一文讲透数据治理核心指标

    股份制改革对我国银行业来说只是一个开始,企业在风险管理、创造价值等方面还有很长的路要走。风险管理要求提供精准的数据模型、创造价值要求充分……查看详情

    发布时间:2020.06.19来源:CSDN浏览量:120次

  • 大数据治理平台建设过程

    大数据治理平台建设过程

    分为三个层次,分别为战略与治理保障、大数据管理和大数据应用与服务,其中战略与治理保障包括,数据战略规划与评估,数据治理组织与职责、数据制……查看详情

    发布时间:2019.08.19来源:CSDN浏览量:272次

  • 为什么数据治理会带来数据驱动的成功

    为什么数据治理会带来数据驱动的成功

    通过寻找创造价值和改进执行的新方法,各种形式和规模的组织都在积极地采用数据驱动的方法,这些方法可以通过分析的进步来实现。……查看详情

    发布时间:2019.01.26来源:亿信华辰浏览量:132次

  • 数据管理是真的, 真的需要!

    数据管理是真的, 真的需要!

    数据管理是与控制组织定义,生成和使用数据的方式相关的各种学科。这些学科的例子包括数据建模,数据架构,数据质量,元数据管理,数据互操作性等……查看详情

    发布时间:2018.12.21来源:数据管理浏览量:86次

  • 什么是数据治理以及董事会应该如何应对?

    什么是数据治理以及董事会应该如何应对?

    数据是公司持续时间最长的资产。它超越了人,设备和设施。数据治理将分析与治理要求相结合。许多公司错误地将数据治理问题与其IT部门联系起来。……查看详情

    发布时间:2018.11.22来源:Nicholas J. Price浏览量:121次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议