数据指标体系和数据治理的管理

发布时间:2019.12.06来源:CSDN浏览量:171次标签:数据治理

为什么要搭建指标体系
我们提到过为什么要搭建指标体系,相信大家在看数据相关招聘岗位简介的时候,也经常看到有关搭建指标体系的要求,因此这里简单的给出两点做指标体系的重要性。

搭建稳定的数据观测体系(维度指标体系),让数据从生产到使用的整个流程更加标准、可靠;

稳定的数据观测体系,不仅能够让数据加工、使用的效率提升,还有利于统一认知,规范数据建设者的工作方法,解决数据维度/指标膨胀,数据不一致的问题,从而拉升内部的相关人员整体的数据专业水平。

怎么搭建指标体系
我们先思考简单的数据问题,这是我作为校招面试官经常会同大家沟通的一个案例。

如果你现在成为一个产品项目的负责人,你想看到哪些数据指标,为什么要分析这些数据指标?

我们现在聚焦一下,从刚才列出的数据指标序列中选出x个指标,怎么选,为什么?

第1题考察点

互联网行业是否熟悉,能够对行业的数据指标有多深的了解;

基本的度量和效果评估意识,构建数据和商业业务的关系抽象能力。

备注:相信我,很多候选人连像样的指标都回答不上几个,更无法洞察数据和商业之间的关系。

第2题考察点

有限的选择下,是否有判断主次的逻辑能力,针对自身的观点和知识能否自我革新升华;

更深层次的思考,为什么要以更少的数据指标去判断商业行为。

这个题目对于处于职场实际工作中的同行来说同样具有考察需要,我们评估一个产品项目所需要的指标是越多越好,还是会存在其中一个适度的分界点(投入产出比的最大化)。

话题回到正题,怎么搭建指标体系?

首先任何没有管理或是数据指标系统的组织中,数据指标的需求形式都类似于第1题的样式存在,团队中不同的人拥有不同的度量单位和评估体系(即使这个人认识到第2题问题的存在,他自身的指标体系依然处于第1题)。

数据指标体系必须是搭建于组织或者一个团体的共识,让整个组织和团体内的度量单位和评估体系,第1题是缺乏管理,肆意生产的野蛮方式。让整个组织和团队提升到第2题的水平达成一致才是数据指标体系。

数据指标体系不是收集指标汇总起来,也不是将所有数据需求全覆盖;

数据指标体系是以最小的投入搭建科学的效果评估指标,让组织和团队达到统一认知的事情;

指标体系的评估标准
指标体系除了有科学的方法搭建,还会存在很多主观的判断。我们在搭建指标体系的时候,经常遇到的问题是为什么大家要遵循这套指标体系,它的权威性怎么得到保障。

指标体系的搭建非常依赖领导的背书和强势认可

指标体系的搭建相对于提升团队的全员水平,所以这不是简单事

指标体系也有生命周期,不断的产品项目阶段需要的指标体系不同

基于以上的几点,指标体系的搭建方法论就很明确了,首先做到领导的认可(指标体系相当于和领导之间的一种协议),其次指标体系的宣贯传播工作不可或缺,其次指标体系的内容需要长期的维护。从这三点我们可以梳理出一个目标的观测值:

基于领导的认可,指标体系是否解决领导提出的问题,问题的量化目标就是指标体系的目标

提高全员的水平怎么证明,问卷、考试、需求文档的质量或引用、指标体系内容的访问数据

指标体系内容的更新频次、更新数量,内容汇报

指标体系的管理内容
数据指标的概念我们很多同学听过,并且也经常看到招聘职位上的要求。但究竟指标体系的怎么落地,包含什么内容相信很少有人真实有过经历。

我对指标体系的理解总体有这个几个观点:

不同组织或者团体期望指标体系解决的问题一致,但落地的指标体系内容不同

指标体系落地产物强依赖于业务,不同的业务存在不同的玩法

指标体系多数情况下连同管理工具一起落地

我认为当前的指标体系,均不能很高效的解决期望问题,我自己目前较为理想的方案也未实际执行

指标体系的管理工具
管理指标体系内容搭建的管理工具,我们通常将其和元数据管理放在一起。也可以看出元数据管理和指标体系管理很类似(元数据的管也存在指标体系同样的问题),在管理指标体系内容的时候,基本涉及以下下几块内容:

数据仓库表管理 // 一般只涉及应用层数据

数据指标管理  // 管理上面提到的指标内容,新增,编辑,删除,状态等

数据维度管理  // 类似指标内容,新增,编辑,删除,状态等

数据模型管理  // 管理指标或者数据表头计算的模型,新增,编辑,删除,状态等

数据应用服务管理  // 支持数据可视化,或者数据服务的方式,接口等

数据权限管理  // 管理工具的权限运营维护
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业必须使其数据治理程序适应数据爆炸和颠覆性技术的现实

    企业必须使其数据治理程序适应数据爆炸和颠覆性技术的现实

    公司必须使其数据治理计划适应数据爆炸和颠覆性技术的现实 今天的数据爆炸 - 以及所揭示的见解 - 不仅从战略角度对组织非常有价值,而且……查看详情

    发布时间:2018.11.26来源:数据治理浏览量:127次

  • 数据质量包括那些方面

    数据质量包括那些方面

    数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。……查看详情

    发布时间:2020.04.09来源:百度浏览量:237次

  • 数据治理—良好的开端

    数据治理—良好的开端

    数据治理意味着什么,它有什么作用?数据治理意味着对数据相关事务的决策和权限的行使。 更具体地说,数据治理是信息相关流程的决策权和责任制……查看详情

    发布时间:2019.06.21来源:知乎浏览量:127次

  • 善治:良好学校的基础

    善治:良好学校的基础

    包机行业的头号问题是什么?大卫弗兰克认为缺乏董事会治理能力。弗兰克说:“强大的董事会将改善特许学校的许多实践问题,从那些正在努力进入高绩……查看详情

    发布时间:2019.03.06来源:亿信华辰浏览量:126次

  • “数据法治化治理”应平衡安全与发展

    “数据法治化治理”应平衡安全与发展

    数据治理的法治化问题,即对数据治理主体的权利义务的设定及其关系模式之制度安排,应符合法治主义要求。“数据法治化治理”要特别关注合法性。……查看详情

    发布时间:2019.08.02来源:中国人民大学未来法治研究院浏览量:152次

  • 6个实施数据治理的最佳实践方法

    6个实施数据治理的最佳实践方法

    在寻找数据治理最佳实施方法时,您可以从已有的各种流程和模板工作的人那里学到很多东西。尽管每个企业都不同,您将需要根据流程调整数据治理实践……查看详情

    发布时间:2021.07.28来源:亿信数据治理知识库浏览量:215次

  • 2019年专注于稳健数据治理的合规性,质量和定制

    2019年专注于稳健数据治理的合规性,质量和定制

    数据治理,组织内数据的正确和有组织的管理,仍然是2019年的一个焦点。对于希望充分利用其数据的组织,他们必须建立系统以确保数据的正确性,……查看详情

    发布时间:2019.03.26来源:亿信华辰浏览量:115次

  • 为什么企业架构需要成熟度模型

    为什么企业架构需要成熟度模型

    跑步之前走路。我们已经听过一百万次了,引用了几乎同样多的不同学科。然而,由于时间有限,想要快速完成任务往往是人性。然而,就像我们的第一步……查看详情

    发布时间:2019.02.26来源:亿信华辰浏览量:163次

  • 企业主数据管理方案

    企业主数据管理方案

    主数据管理使得企业能够集中化管理数据,在分散的系统间保证主数据的一致性,改进数据合规性、快速部署新应用、充分了解客户、加速推出新产品的速……查看详情

    发布时间:2020.04.29来源:知乎浏览量:164次

  • 大数据治理需要具备哪些能力和关键技术

    大数据治理需要具备哪些能力和关键技术

    从企业的数据资产管理和提升数据质量等的数据应用上,大数据治理的内容在不断地发展和完善,在其落地实施的过程中面临着巨大的挑战。我们现在通过……查看详情

    发布时间:2019.08.13来源:知乎浏览量:148次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议