人工智能治理应当起步

发布时间:2019.10.18来源:中国经营报浏览量:3次标签:数据治理

人工智能正在以前所未有的速度发展,大大超出了人们的预期,目前全球活跃人工智能企业达到了5000家左右。据相关预测,到2022年全球人工智能相关产品、服务和基础设施的价值将达到4万亿美元,将广泛地应用于汽车、医疗、交通、制造、金融等多个领域。
人工智能治理应当起步
我国人工智能起步早、发展快,预计到2020年我国人工职能产业规模将突破1600亿元,带动相关产业突破1万亿元。人工智能正在深刻地改变世界的方方面面,需要认真审视。

人工智能的本质是用机器模拟人的智能,人工智能的载体是机器,但其反映的是人的能力,是人类智慧的复制、衍生、升级。

毫无疑问,人工智能是新一轮科学技术的重大进步,从人类发展的历史来看,前几次重大的技术创新都无一例外加快了人类文明的进程,蒸汽、电气、计算机革命很大程度上延伸了人的体力和脑力,提升了人类的生活,增进了社会的福利。人工智能为社会描绘出了一幅美好的前景,机器的学习、思考、行动代替了人类的大部分活动,人们的休闲时间大大增加,一周工作3天,一天工作4小时,世界上再也没有“血汗工厂”,工人基本摆脱了工作时间的束缚,实现了高度自由。

但是人工智能出现后,伴随着兴奋的还有质疑和恐惧,因为人工智能不再是人的延伸,而是可以自我演进的,是相对独立的。这就决定了人工智能发展面临着巨大的挑战,除了技术上的挑战,更多的则是经济社会上的变革的挑战。

人工职能的前景是美好的,但要经历的阵痛也是不可避免的。一是结构性失业。如果说此前的科技革命中机器对人的取代是部分的,那么人工智能对人类的取代将是全面的。这就决定了人工智能所带来的机器对人的替代将是更广泛的,一些专门的、简单性的脑力劳动工作岗位将会在人工智能第一波发展中迅速被取代,《美国工厂》中的福耀玻璃已经在行动,可以预计,一些相对复杂的工作也将逐渐被取代,最后剩下来的只有一些需要创新思维的岗位。与这个过程相伴随的将是大量岗位的消失与失业,人工智能相关产业将会空前发达,吸纳越来越多的聪明的人在这个行业就业,但由于要求很高,就业数量将会受限,还需要探索一些全新的产业领域来开辟新的岗位。

二是贫富差距拉大。人工智能发展需要“烧钱”,其投入是巨大的、长期的,需要资本的持续注入,但是,在人工智能行业的资本将轻而易举地获得巨额回报,人工智能行业将会更多地获得社会整体利润的分配,财富迅速向少数人手上集中。《21世纪资本论》中所描述的“富者更富”的大趋势将得到空前加强。

三是数据治理。人工智能需要大数据来“训练”。机器如果没有捕捉到足够大的数据量,那么很难真正发挥人工智能的作用。当前人工智能的大量增长是由谷歌、百度、腾讯等消费互联网公司推动的,这些公司都有数亿的用户数据。这些海量数据如何保证用于正当的商业活动,如何保证不会被泄露和滥用,对数据治理提出了挑战。据预计,2019~2023年智能手机出货量将达到73亿,手机将成为日常生活中体验AI的方式,如何规范数据的产生、使用,将是一个重大的挑战。换脸应用“ZAO”热背后折射出了数据治理的缺失。

四是安全可控。由于人工智能具有自我学习、行动的功能,如何保证人工智能能够足够快地修复自身漏洞,如何保证人工智能不会“变坏”,从而真正实现安全、稳定与可靠。

虽然专用人工智能已经突飞猛进,但通用人工智能还处在起步阶段,从“专才”向“通才”发展还有很长的路要走。在人工智能的各种影响逐渐显现的时候,加强人工智能治理正当其时,我国应当抓住有利的“窗口期”,边发展边规范,为人工智能创造更加阳光的环境,注入更加强大的动力。

一是规划。规划不能仅仅停留在产业发展层面,要从整个社会宏观视角来规划。在国家层面上成立专门指导人工智能发展的委员会。选择人工智能行业的科学家、企业家,以及法律、经济领域的专家组成,对人工智能的发展进行规划和指导,形成具有中国发展特色的规范,定期向社会发布,引导人工智能发展的方向。目前,各地都成立了人工智能的发展基金,也出台了大量的支持政策,必须对支持的企业有明确的界定,支持的必须是有社会责任的企业,防止人工智能滥用从而偏离正常轨道。

二是转型。目前,国内很多大学都设立的人工智能专业,可以从招生上进一步增加数量,把更多的新就业人口转移到人工智能产业。同时,要加快改革再就业制度,加大财政投入,建立起更加完备的社会技能培训体系,编织就业安全网,把从人工智能替代的失业人员逐渐转移到其他就业岗位。

三是治理。对数据的生产、存储、使用、分析进行规范,在更高层次上建立制度,防止数据滥用,创造更加透明、开放、阳光的环境。对人工智能研究和应用方向从制度上逐渐予以明确,建立负面清单,及时动态更新管理,确保人工智能的发展始终围绕为了人类社会的幸福这个终极目标。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据中台和传统的数据系统出发点不一样

    数据中台和传统的数据系统出发点不一样

    原来的数据平台也好,数据湖也好,数据仓库也好,它们的出发点很多时候有局限性,应该说更是一个支撑性的技术系统,即一定要去考虑我先有什么数据……查看详情

    发布时间:2021.01.23来源:知乎浏览量:1次

  • 数据治理之道是什么,要怎么做?

    数据治理之道是什么,要怎么做?

    数据治理需要体系建设:为发挥数据价值需要满足三个要素:合理的平台架构、完善的治理服务、体系化的运营手段。……查看详情

    发布时间:2021.05.14来源:亿信数据治理知识库浏览量:3次

  • 数据治理的未来:平衡数据治理和数据管理

    数据治理的未来:平衡数据治理和数据管理

    如何通过快速访问高质量数据,灌输信心并支持数据驱动的决策,为业务合作伙伴创造竞争优势?在为所有CitizenBank的企业数据创建和实施……查看详情

    发布时间:2018.12.27来源:亿信华辰浏览量:1次

  • 数据治理:医院要平衡的4个考虑因素

    数据治理:医院要平衡的4个考虑因素

    电子健康倡议基金会,一个专注于质量和安全改进的医疗保健合作,以及LexisNexis Risk Solutions的医疗保健部门,于8月……查看详情

    发布时间:2018.11.27来源:Jessica Kim Cohen浏览量:2次

  • 数据治理准备的五大支柱:团队资源

    数据治理准备的五大支柱:团队资源

    Facebook丑闻突显了组织需要理解和应用数据治理准备的五大支柱。……查看详情

    发布时间:2019.01.24来源:亿信华辰浏览量:2次

  • 良好数据治理的6步路线图

    良好数据治理的6步路线图

    今年早些时候,我们发现许多数据科学家将大部分时间花在“数据管理员”上 - 即分类和清理数据,而不是将其分析为可操作的见解。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:2次

  • 数据与数据治理两个基本概念

    数据与数据治理两个基本概念

    数据治理这项基础数据能力的重要性越来越多突出。2017年4月22日,中国数据标准化及治理奖实践奖的现场评审在清华大学成功举行。……查看详情

    发布时间:2018.11.30来源:御数坊浏览量:0次

  • 企业数据治理到底怎么做?

    企业数据治理到底怎么做?

    数据治理对于确保数据的准确、适度分享和保护是至关重要的。有效的数据治理计划会通过改进决策、缩减成本、降低风险和提高安全合规等方式,将价值……查看详情

    发布时间:2019.08.30来源:知乎浏览量:0次

  • 数据治理—这些你应该清楚

    数据治理—这些你应该清楚

    我看到组织在开始他们的数据治理之旅时犯的一个重大错误就是忘记了数据背后的基本原理。因此,不要仅仅治理治理。无论您是需要减少风险或最大限度……查看详情

    发布时间:2019.03.14来源:亿信华辰浏览量:1次

  • 数据治理准备的支柱:企业数据管理方法

    数据治理准备的支柱:企业数据管理方法

    Facebook的数据问题继续成为头条新闻的主导,并进一步凸显了企业范围内数据资产视图的重要性。备受瞩目的案件与其他着名的数据丑闻有所不……查看详情

    发布时间:2019.01.24来源:亿信华辰浏览量:5次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议