一文搞懂数据质量问题及对应的解决办法

发布时间:2019.11.05来源:知乎浏览量:1242次标签:数据治理

常见的数据质量问题包括
1、数据无法匹配
2、数据不可识别
3、数据不一致
4、数据沉余重复
5、实效性不强
6、精度不够

数据质量管理的目标
通过数据分析、数据评估、数据清洗、数据监控、错误预警等内容,解决数据质量问题,使数据的质量得以改善,使其满足数据需求方对数据质量的规则要求。

数据质量评估包括但不止以下6个方面
完整性 Completeness:度量哪些数据丢失了或者哪些数据不可用。
规范性 Conformity:度量哪些数据未按统一格式存储。
一致性 Consistency:度量哪些数据的值在信息含义上是冲突的。
准确性 Accuracy:度量哪些数据和信息是不正确的,或者数据是超期的。
唯一性 Uniqueness:度量哪些数据是重复数据或者数据的哪些属性是重复的。
关联性 Integration:度量哪些关联的数据缺失或者未建立索引。

数据质量评估模型
要素分别为:基础模型、数据质量定义模型、数据质量控制模型、数据质量评价模型、数据质量辅助模型。

1.基础模型。
其他模型必须以基础模型中的计划和标准为依据。基础模型主要是映射、定义数据采集标准,上载分单位的采集计划,同时纳入了约束规则定义规范、控制规则定义规范、模板定义规范。

数据标准:分两部分,一部分是直接映射应用中的标准,例如源数据库标准;另一部分是针对新增应用库和项目库标准的定义规范,包括代码定义标准、数据项定义标准(例如是取英文还是汉语拼音,取几个字符)、值域定义标准等等新增表准的建立规范;
采集计划:采集单位的每月上载的日度、月度、年度的采集计划;
约束规则定义规范:主要描述质量定义模型中的语法构成;
控制规则定义规范:针对服务器负载和采集表的及时性,要求建立的后台执行过程的控制方式的使用说明;

2.数据质量定义模型。
以基础模型为前提对数据质量的统一规范的定义,是数据质量分析评价的依据和基础。数据质量定义模型可以使用质量特性描述。数据质量特性归纳为数据的一致性、数据的准确性、数据的完整性、数据的及时性4个关键特性。
(1)一致性的量化评价指标:字段一致率、表间字段一致率、表间记录一致率。
(2)准确性的量化评价指标:准确率、差错率、问题字段个数、问题记录覆盖率
(3)及时性的量化评价指标:采集项目及时率;单位入库及时率
(4)完整性的量化评价指标:字段缺失数、缺失记录覆盖率、计划完成率。

3.数据质量控制模型。
数据质量控制模型以数据质量定义模型为基础,按照定义的检查范围和时间以自动或手工方式完成对数据质量的检查工作。在质量控制过程中违反了数据质量定义的,视为数据质量问题,数据质量问题直接通过数据质量的关键特性和指标反映出来。数据质量控制模型的控制内容表现在:对数据检查对象、数据检查频度、数据检查时间、数据检查方式等方面进行控制。
(1)数据检查对象:是指根据采集计划设定需要检查的用户、专业数据表、数据库实体。
(2)数据检查频度;是指根据数据表的采集计划和实际发生的频度,设定存储过程的检查执行频率。
(3)数据检查时间:是指根据每日生产应用的密集时间以及数据发生到采集入库的密集时间,综合设定一个检查开始执行的时刻。
(4)数据检查方式:是指执行检查过程的方式可以由后台过程自动控制,每间隔2小时自动检查一次;也可以由人工干预手动检查,任意时刻都可以执行检查(当然尽量选择数据库流量比较低的时候)。

4.数据质量评价模型。
数据质量评价模型,是以数据质量定义模型为依据,由数据质量控制模型操控执行,根据反馈的质量检查结果表,评议出数据质量的关键指标,实现对数据质量的量化诊断和评价。

数据质量分析评价模型功能核心是,通过对基础模型中的采集计划和质量定义模型中的约束规则的处理,由控制模型调用可以实现检查分析的后台存储过程在实体库中执行检查,形成查询结果,再由分析程序进行分析、计算、分类、汇总,生成反映采集计划完成情况和数据质量量化指标的结果,存储到分析结果表中,从前台调用这个分析结果表,就可以生成一份详尽的反映数据质量问题各类量化指标的数据质量分析评估报告,展现所评估实体库的数据入库的及时率、数据上报的完整性、数据采集的一致性、数据入库的准确率。

5.数据质量辅助管理模型
数据质量辅助管理包括报告模版管理、权限管理、数据库资源占用情况等等。

下面介绍一款数据质量管理平台来解决数据质量问题
EsDataClean数据质量管理平台是亿信华辰自主研发的数据质量管理平台,提供了业界领先的质量规则管理方法、质量评估方法、零编码质检规则、跨数据源比对、质量分析报告、数据质量整改、质量绩效评估等主要功能,以数据标准为数据检核依据,以元数据为数据检核对象,通过向导化、可视化等简易操作手段,将质量评估、质量检核、质量整改与质量报告等工作环节进行流程整合,形成完整的数据质量管理闭环。

亿信数据质量管理平台从找到问题数据开始,控制数据质量,贯彻始终,全面提升数据的完整性、规范性、及时性、一致性,减少因数据不可靠导致的决策偏差和损失。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理的全过程

    数据治理的全过程

    数据治理是指从使用零散数据变为使用统一主数据、从具有很少或没有组织和流程治理到企业范围内的综合数据治理、从尝试处理主数据混乱状况到主数据……查看详情

    发布时间:2019.08.07来源:CSDN浏览量:104次

  • 新形式的治理需要安全和道德地解锁数据价值

    新形式的治理需要安全和道德地解锁数据价值

    尽管今天的数据非常丰富,但其中大部分仍处于孤岛状态,这意味着需要新的治理结构来打开它并释放其对社会的潜在价值。……查看详情

    发布时间:2019.03.21来源:亿信华辰浏览量:106次

  • 如何有效的进行数据治理?

    如何有效的进行数据治理?

    如果你处理或使用过大量数据,一定有听到过“数据治理”这个词。你会思考数据治理是什么?数据治理是否适合你?如何实施……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:145次

  • 数据治理和当今的新数据目标

    数据治理和当今的新数据目标

    尽管实施全面的治理计划似乎令人生畏,但拥有有效数据治理策略和MDM解决方案的公司不断寻找新方法从数据中提取价值。……查看详情

    发布时间:2019.03.25来源:亿信华辰浏览量:125次

  • 数据管理危险:不到一半的MDM计划是有效的

    数据管理危险:不到一半的MDM计划是有效的

    您可能不认为“数据治理”是一个重要的主题。特别是当你的IT预算火灾肆虐或者你计划下周的裁员时。……查看详情

    发布时间:2018.12.29来源:亿信华辰浏览量:112次

  • 数据标准在数据资产管理中的意义

    数据标准在数据资产管理中的意义

    随着大数据的持续升温,数据资产管理近年来成为政府和企业领导层特别关注的领域。在谈数据的价值之前,必须先说清楚所谈论的数据资产都有那些,都……查看详情

    发布时间:2019.12.19来源:知乎浏览量:151次

  • 健康的共同依赖:数据管理和数据治理

    健康的共同依赖:数据管理和数据治理

    现在,数据管理和数据治理比以往任何时候都更加重要。数据驱动业务的超竞争特性意味着组织需要比以往更多地从数据中获得更多 - 而且速度更快。……查看详情

    发布时间:2019.02.15来源:亿信华辰浏览量:136次

  • 数据资产管理的发展趋势

    数据资产管理的发展趋势

    随着数据资产管理生态系统的不断发展,现有的实践体系也在迅速发展,可以从数据对象、数据采集、处理架构、组织职能、管理手段和应用范围六个方面……查看详情

    发布时间:2020.09.11来源:知乎浏览量:183次

  • 企业数据标准管理系统应该这样做!

    企业数据标准管理系统应该这样做!

    提到“标准”二字,我们第一时间能够想到的就是一系列的标准化文档,例如:产品设计标准、生产标准、质量检验标准、库房……查看详情

    发布时间:2020.08.31来源:CSDN浏览量:143次

  • 数据治理的未来:平衡数据治理和数据管理

    数据治理的未来:平衡数据治理和数据管理

    “如何通过快速访问高质量数据,灌输信心并支持数据驱动的决策,为业务合作伙伴创造竞争优势?” Citizens Bank首席数据官(CDO……查看详情

    发布时间:2019.02.21来源:亿信华辰浏览量:144次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议