大数据时代的企业都有那些数据质量问题

发布时间:2019.09.27来源:数据分析网浏览量:114次标签:数据治理

当今社会,数据量正在以爆炸的方式迅猛增长,数据表现形式千变万化。云计算、物联网等等的出现,更是使大数据时代更快的发展。维基百科对大数据的定义使:数据增长如此之快,以至于难以使用现有的数据库管理工具进行快速的数据获取、存储、共享、分析和可视化等操作,这些数据量使如此之大,已经不是传统的GB和TB为单位来衡量,而是以PB,甚至使ZB为计量单位,所以称为大数据。使用大数据已经成为企业再竞争中取胜的强有力的武器。

企业要想充发挥大数据的作用,就要保证数据的可靠、及时、准确,只有从高质量的数中提取出来的有用信息,企业才可以做出更精准的决策,才能更了解客户的需求,否则大数据的优势将无处显现。所以,企业在追求大数据的同时更应该注重其质量。那么使用一款优秀的数据治理工具是成功之根本。

在企业的数据中,最影响数据质量的问题主要来源于四个方面:信息因素、技术因素、流程因素和管理因素。

信息因素:产生这个因素原因主要是元数据的描述和理解错误,数据源规格不统一,从最基础的数据的信息就得不到保证。
技术因素:主要是指数据处理的技术环节出现的异常导致数据质量问题。这一部分主要包括数据的创建、数据的获取、数据的传输、数据的使用、数据的维护。
流程因素:只要是指忧郁系统作业流程和人工操作的行为不当造成数据质量问题,主要是指系统数据的创建流程、传递流程、使用流程、维护流程等各环节。
管理因素:由于管理机制出现了问题或者管理缺陷。

这些问题的出现,并不是不可控的,利用好了工具,这些问题烟消云散,完全已经不用担心。
亿信华辰的睿治——智能数据治理平台你需要了解一下。

它是由元数据管理数据标准管理数据质量管理、数据集成管理、主数据管理数据交换管理、数据资产管理、数据安全管理、数据生命周期管理九大模块构成,全程助力数据标准落地,提高数据质量。

数据治理
从元数据端到端的自动化采集到全面完整的数据标准管理到使用传输、清洗、转换、整合等组件来实现统一调度、统一监控到隐私数据的加密、模糊化处理,保障数据的安全运作,数据的创建、存储、删除都是可视化的。

EsDataClean数据质量管理平台是亿信华辰自主研发的数据质量管理平台,提供了业界领先的质量规则管理方法、质量评估方法、零编码质检规则、跨数据源比对、质量分析报告、数据质量整改、质量绩效评估等主要功能,以数据标准为数据检核依据,以元数据为数据检核对象,通过向导化、可视化等简易操作手段,将质量评估、质量检核、质量整改与质量报告等工作环节进行流程整合,形成完整的数据质量管理闭环。
数据质量流程图
目前,亿信华辰数据质量管理平台已经经过了卫生、法院、电力、银行等行业的项目检验,用于解决业务系统运行、数据仓库建设及数据治理过程中的各种数据质量问题。作为与亿信华辰合作多年的客户,中国进出口银行此次也荣获数据质量卓越实践奖。

在整个数据治理环节,亿信数据质量管理平台从找到问题数据开始,控制数据质量,贯彻始终,全面提升数据的完整性、规范性、及时性、一致性,减少因数据不可靠导致的决策偏差和损失。

以前人们了解数据质量问题都是使用sql的数据质量管理方法,对操作人员要求高,且不灵活。有了数据质量平台后,可以很方便的对目标数据的数据质量进行评估,以便进行绩效管理。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 如何构建企业安全易用的数据资产?

    如何构建企业安全易用的数据资产?

    在数据治理架构中,数据资产管理位于底层数据和数据管理与应用之间,处于承上启下的重要地位。对上支撑数据安全管理等职能建设以价值发掘为导向的……查看详情

    发布时间:2021.06.02来源:亿信华辰数据治理知识库浏览量:234次

  • 数据治理:一些美好的开始

    数据治理:一些美好的开始

    数据治理增强了业务参与,共享理解,关注和协调,将日益脱节的数据环境结合在一起,并在许多EDM计划中提供数据值优化。……查看详情

    发布时间:2018.12.21来源:亿信华辰浏览量:182次

  • 做好数据治理才能建设大数据平台

    做好数据治理才能建设大数据平台

    大数据不是凭空而来,1981年第一个数据仓库诞生,到现在已经有了近40年的历史,而国内企业数据平台的建设大概从90年代末就开始了,从第一……查看详情

    发布时间:2018.11.28来源:数据治理浏览量:162次

  • 为您的数据治理策略选择一个更聪明的比喻

    为您的数据治理策略选择一个更聪明的比喻

    组织希望“数据驱动”,其要点是他们希望人们使用数据来做出决策。领导们知道太多的人组成的东西。每一……查看详情

    发布时间:2019.01.14来源:亿信华辰浏览量:162次

  • 大数据时代 这样炼钢——亿信华辰

    大数据时代 这样炼钢——亿信华辰

    铁流滚滚,四溅迸射出绚丽的火花。经过1个多小时的高温淬炼,高达1500摄氏度的铁水从出铁口喷涌而出,像一条火龙沿着沟槽蜿蜒流动。……查看详情

    发布时间:2019.02.12来源:亿信华辰浏览量:180次

  • 数据治理的目的和意义

    数据治理的目的和意义

    ​在"新基础设施"和疫情等外部因素的推动下,数字化转型正对越来越多的行业而言变得重要且紧急。如何更好地利用数据已经成为企业数字化转型的关……查看详情

    发布时间:2022.06.09来源:小亿浏览量:1160次

  • 中国科大:大数据实现本科生学业“全过程”管理

    中国科大:大数据实现本科生学业“全过程”管理

    近年来,中国科学技术大学(以下简称“中国科大”)践行“管理即服务”理念,实现“教、学、管”联动育人,完善“学业追踪”和“困难资助追踪”网……查看详情

    发布时间:2019.03.11来源:亿信华辰浏览量:108次

  • 数据治理新挑战:数据要素大规模流动

    数据治理新挑战:数据要素大规模流动

    “我们谈论大数据的时候在谈什么?”“数据生产要素、数据治理、隐私计算……这些都是关键词。”7月24日下午,2020年中国互联网大会“数据……查看详情

    发布时间:2020.07.31来源:知乎浏览量:167次

  • 使用数据治理克服常见的业务障碍

    使用数据治理克服常见的业务障碍

    在快速发展的技术,大数据和高级分析的时代,数据治理在每个组织中都发挥着至关重要的作用,无论规模大小或行业如何。从定义元数据管理指南,到解……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:138次

  • 数据治理的价值体系包括哪些方面?

    数据治理的价值体系包括哪些方面?

    数据治理的目标是通过对数据资产的有效管控持续创造价值,价值域通过对治理结果的有效整理,通过构建具体化的数据产品,实现上述的价值创造。那么……查看详情

    发布时间:2022.05.05来源:小亿浏览量:342次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议