大数据时代的企业都有那些数据质量问题

发布时间:2019.09.27来源:数据分析网浏览量:98次标签:数据治理

当今社会,数据量正在以爆炸的方式迅猛增长,数据表现形式千变万化。云计算、物联网等等的出现,更是使大数据时代更快的发展。维基百科对大数据的定义使:数据增长如此之快,以至于难以使用现有的数据库管理工具进行快速的数据获取、存储、共享、分析和可视化等操作,这些数据量使如此之大,已经不是传统的GB和TB为单位来衡量,而是以PB,甚至使ZB为计量单位,所以称为大数据。使用大数据已经成为企业再竞争中取胜的强有力的武器。

企业要想充发挥大数据的作用,就要保证数据的可靠、及时、准确,只有从高质量的数中提取出来的有用信息,企业才可以做出更精准的决策,才能更了解客户的需求,否则大数据的优势将无处显现。所以,企业在追求大数据的同时更应该注重其质量。那么使用一款优秀的数据治理工具是成功之根本。

在企业的数据中,最影响数据质量的问题主要来源于四个方面:信息因素、技术因素、流程因素和管理因素。

信息因素:产生这个因素原因主要是元数据的描述和理解错误,数据源规格不统一,从最基础的数据的信息就得不到保证。
技术因素:主要是指数据处理的技术环节出现的异常导致数据质量问题。这一部分主要包括数据的创建、数据的获取、数据的传输、数据的使用、数据的维护。
流程因素:只要是指忧郁系统作业流程和人工操作的行为不当造成数据质量问题,主要是指系统数据的创建流程、传递流程、使用流程、维护流程等各环节。
管理因素:由于管理机制出现了问题或者管理缺陷。

这些问题的出现,并不是不可控的,利用好了工具,这些问题烟消云散,完全已经不用担心。
亿信华辰的睿治——智能数据治理平台你需要了解一下。

它是由元数据管理数据标准管理数据质量管理、数据集成管理、主数据管理数据交换管理、数据资产管理、数据安全管理、数据生命周期管理九大模块构成,全程助力数据标准落地,提高数据质量。

数据治理
从元数据端到端的自动化采集到全面完整的数据标准管理到使用传输、清洗、转换、整合等组件来实现统一调度、统一监控到隐私数据的加密、模糊化处理,保障数据的安全运作,数据的创建、存储、删除都是可视化的。

EsDataClean数据质量管理平台是亿信华辰自主研发的数据质量管理平台,提供了业界领先的质量规则管理方法、质量评估方法、零编码质检规则、跨数据源比对、质量分析报告、数据质量整改、质量绩效评估等主要功能,以数据标准为数据检核依据,以元数据为数据检核对象,通过向导化、可视化等简易操作手段,将质量评估、质量检核、质量整改与质量报告等工作环节进行流程整合,形成完整的数据质量管理闭环。
数据质量流程图
目前,亿信华辰数据质量管理平台已经经过了卫生、法院、电力、银行等行业的项目检验,用于解决业务系统运行、数据仓库建设及数据治理过程中的各种数据质量问题。作为与亿信华辰合作多年的客户,中国进出口银行此次也荣获数据质量卓越实践奖。

在整个数据治理环节,亿信数据质量管理平台从找到问题数据开始,控制数据质量,贯彻始终,全面提升数据的完整性、规范性、及时性、一致性,减少因数据不可靠导致的决策偏差和损失。

以前人们了解数据质量问题都是使用sql的数据质量管理方法,对操作人员要求高,且不灵活。有了数据质量平台后,可以很方便的对目标数据的数据质量进行评估,以便进行绩效管理。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 4种启动数据治理计划的数据治理最佳实践

    4种启动数据治理计划的数据治理最佳实践

    对于数据治理而言,不同行业和地理位置的巨大景观聚集在一起,为有效管理数据创造了重要且可持续的东西。……查看详情

    发布时间:2018.12.25来源:亿信华辰浏览量:134次

  • 关于数据标准认识的几个误区

    关于数据标准认识的几个误区

    数据标准这个词,最早是在金融行业,特别是银行业的数据治理中开始使用的。数据标准工作一直是数据治理中的重要基础性内容。但是对于数据标准,不……查看详情

    发布时间:2019.12.20来源:知乎浏览量:101次

  • 数据要素跑步入场,如何构建大数据治理体系?

    数据要素跑步入场,如何构建大数据治理体系?

    通俗来说,数据治理就是预防、诊断和治疗与数据有关的一切“病症”。亿信华辰智能数据治理平台——“睿治”就是根治病症的良药。……查看详情

    发布时间:2021.05.13来源:亿信数据治理知识库浏览量:153次

  • 数据治理运营:团队

    数据治理运营:团队

    这是关于数据治理运作的两部分系列的第二部分。“ 数据治理运作:差距 ”系列的第一部分讨论了需求是如何产生的,数据治理运营所需的一些主要原……查看详情

    发布时间:2018.11.14来源:Jayakumar Rajaretnam浏览量:111次

  • 数据质量稳定提升方法:使用反馈循环

    数据质量稳定提升方法:使用反馈循环

    每个额外的数据源都给流程增加了更多的复杂性,并且至少在短期内,在流程自动化之前消耗了额外的时间。现在是时候这些数据专业人员可以专门回答业……查看详情

    发布时间:2021.04.23来源:亿信数据治理知识库浏览量:163次

  • 建立统一的数据交换平台实现各部门的数据共享

    建立统一的数据交换平台实现各部门的数据共享

    要实现各部门的数据共享,必须先建立统一的数据交换平台,通过交换平台实现各异构数据库之间的数据集成,实现原有各业务系统在数据级集成,保证异……查看详情

    发布时间:2020.08.21来源:知乎浏览量:144次

  • 善治:良好学校的基础

    善治:良好学校的基础

    包机行业的头号问题是什么?大卫弗兰克认为缺乏董事会治理能力。弗兰克说:“强大的董事会将改善特许学校的许多实践问题,从那些正在努力进入高绩……查看详情

    发布时间:2019.03.06来源:亿信华辰浏览量:108次

  • 数据中台不等于大数据平台-数据中台价值

    数据中台不等于大数据平台-数据中台价值

    数据中台不等于大数据平台,数据中台的核心工作也并不是将企业的数据全部收集起来做汇总就够了。数据中台的使命是利用大数据技术、通过全局规划来……查看详情

    发布时间:2020.11.21来源:知乎浏览量:187次

  • 数据治理与数据管理:有什么区别?

    数据治理与数据管理:有什么区别?

    如果今天有任何定义成功企业的东西,那就是公司数据的成功理解,使用和策略。了解您的数据并确定如何实施它会带来一系列问题,包括用户和利益相关……查看详情

    发布时间:2018.11.13来源:克里希基德浏览量:112次

  • 大数据时代监管安全的“智慧大脑”

    大数据时代监管安全的“智慧大脑”

    在这里,监控民警不仅是监狱监管安全防线上的眼睛、耳朵、嘴巴,还是视频监控、固证锁证、指挥联动、应急处突的“智慧”大脑。这里就是监狱监管安……查看详情

    发布时间:2019.03.27来源:亿信华辰浏览量:110次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议