数据治理与数据质量
发布时间:2019.01.03来源:Magic浏览量:71次标签:数据治理
单纯从数据层面来看,数据体系包括治理、管理和应用三个部分。治理是负责解决人与人之间的事,管理负责各个职能领域,应用则是价值的实现。不讨论基础层,iaas层,只讨论数据视角的事情。
数据管理里面数据质量dq是人与人矛盾分歧最大的职能域,所以也配置全套的数据治理手段。细节不多谈,这方面理论和实践都比较成熟,但效果差强人意。现在讨论大数据,应该和场景关联起来;同样数据质量和业务需求和技术方案密切相关。数据质量管理开展的驱动因素比较复杂,银行里面里面的驱动因素第一是监管,第二是内部的数据治/管理(比如标准),第三才是数据应用。
举个典型案例,比如同一业务指标在不同系统间的结果不一致。这个分析起来要看从业务定义开始,到数据采集、加工处理、应用各个环节;影响范围也会比较广,比如对监管、对决策;从数据体系职能域看呢,又会和数据治理、数据标准、数据架构有关联。
从数据生产者、使用者的角度都存在潜在的问题,流程、标准不一致也是导致问题的原因,所以数据质量的讨论往往比较复杂琐碎。有个简化的思路就是quality = fitness for purpose,是否有问题,关键看是谁的什么purpose。大数据背景下补充两个dq属性,一个是可链接性,内外部数据的关联整合;另一个是真实性,这是传统dq未曾参与或者说积极回避的事情。真实性实在是难啊,直接就可以成为i数据挖掘、人工智能的应用案例;相比之下关联整合现在做的还比较多。现在更愿意采用fitness for purpose也是短期效益迫使的缘故,数据质量的长期效益往往难以实现、也难以证明。
数据质量是综合表现,原因错综复杂。数据治理是王婆娘的裹脚布,也是政治斗争的绞肉机。治理与管理都存在矛盾,跟别说与应用之间的关系了。传说国外企业的CDO往往三年就要更换东家,也就很容易理解了。
归根结底都要落到人的因素上,数据的管理与应用是客户因素占比大,还是主管因素占比大呢?我想大家心里都有谱,所以试图依赖技术手段解决管理问题终归都会失效。
回到开头的问题,治理、管理都是细腻的事情,需要工匠化反复锤炼,还有长期不受重视的困惑,这些都对从业者是巨大的挑战。对我个人来言,我更愿意去在大数据实践中讨论治理、管理与应用的融合,换句话说就是价值导向驱动数据体系的运转。这样的视角下,可以研究的问题就会很多,并且目标会更精准一下。相比原来试图从底层解决治理、管理问题的思路要务实一些。另外就是可以持续探索新技术了,人工智能、区块链都是目光所及范围之内的内容。
-
用数据治理来拯救当今的大数据应用
当今社会,大数据的应用越来越广泛,企业和大数据的结合也越来越紧密。数据,俨然已成企业的重要资产之一。但是,大数据却并不是那么好管理,数据……查看详情发布时间:2019.08.15来源:知乎浏览量:81次
-
医疗领域的领导与治理
医疗保健领域的董事会感受到与其他类型组织相同的监管压力。对领导力和治理的重视使医疗保健委员会围绕董事会议席表示关注,目标是采取更强有力的……查看详情发布时间:2019.03.14来源:亿信华辰浏览量:104次
-
数据管理的演进:从响应业务到创造业务
企业对数据的利用有三个阶段:响应运营,响应业务,创造业务。数据中台解决的是响应业务的问题,第三阶段“创造业务”,则需要AI中台。……查看详情发布时间:2019.03.19来源:亿信华辰浏览量:96次
-
如何应对数据标准化的难题
数据标准好制定,但是数据标准落地相对就困难多了。国内的数据标准化工作发展了那么多年,各个行业,各个组织都在建设自己的数据标准,但是你很少……查看详情发布时间:2019.12.20来源:知乎浏览量:108次
-
数据治理:将数据从源头进行清洗
数据一切都与技术的集中化有关。数据安全地存储在企业大型机上,只有具备导航预处理数据库技能的程序员才能访问它。差不多四十年后,所有这些都与……查看详情发布时间:2019.06.20来源:简书浏览量:125次
-
企业数据治理项目如何落地?
数据治理在系统层面包括数据标准、元数据、数据质量、生命周期管理、数据安全、数据资产共六大核心模块;在管理层面需要通过数据治理组织、数据治……查看详情发布时间:2020.06.29来源:知乎浏览量:107次